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1. Introduction

The problem of quantum entanglement and its measurement has a long history in quantum

mechanics, going back to von Neumann, who introduced the concept of entanglement

entropy. The quantum mechanical state of a subsystem A is defined by its reduced density

matrix ρA, obtained by tracing out the information contained in B, the rest of the system.

Here A and B are a partition of a larger system which is assumed to be in a pure quantum

state. The von Neumann entanglement entropy SA (SB) of region A (B) is defined to be

SA = −tr (ρA ln ρA) = −tr (ρB ln ρB) = SB. (1.1)

For a quantum mechanical system with a finite (and typically) small number of degrees

of freedom, the von Neumann entropy is a useful and quantitative way to quantify the

entanglement encoded in a quantum state.

The entanglement entropy in a quantum field theory, and for that matter in any

quantum mechanical system with an infinite (macroscopic) number of degrees of freedom,

is in general a complicated non-local quantity whose properties are not well understood.

In quantum field theory, interest in the properties of the entanglement entropy arose in

the context of finding a possible explanation of the Bekenstein-Hawking area law of black

hole thermodynamics in terms of quantum information concepts. In a local quantum field

theory in d space dimensions, the entanglement entropy for a finite region of linear size

L scales with the size of the boundary (“area”) (L/a)d−1 of the region, but with a non-

universal (i.e., dependent on the choice of the ultraviolet cutoff a) prefactor without an a

priori relation to any general-relativistic quantities. [1] Further studies showed that in 1+1-

dimensional conformal quantum field theories this generally non-universal field-theoretic

area law reduces to a universal ln (L/a) size dependence with a universal coefficient equal

to c/3, where c is the central charge of the conformal field theory [2, 3]. Aside from these

important results, little else is known about the behavior of the entanglement entropy in

quantum field theory.

On the other hand, interest in the behavior of the entanglement entropy in condensed

matter systems arose in the context of studies of systems near quantum critical points. In

that context, the concept of entanglement entropy offers a new perspective to characterize

the behavior of quantum critical points from a unique quantum mechanical perspective.

However, although the behavior of the entanglement entropy has been studied in a number

of interesting quantum critical systems [3 – 8], its behavior at generic critical points is

not yet well understood. Progress on this problem is of general interest since deeper

understanding of the scaling behavior of the entanglement entropy near quantum critical

points will shed light on its general structure in quantum field theory, and vice versa. In

addition, this new way of characterizing quantum phase transitions is of interest in the

context of current efforts to use such systems for quantum computing.

It turns out that the theories for which the concept of entanglement entropy is par-

ticularly powerful are topological quantum field theories. The best understood topologi-

cal quantum field theory is the Chern-Simons gauge theory in 2 + 1 dimensions. [9, 10]

The main purpose of this paper is to determine the connection between the entanglement
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entropy of Chern-Simons gauge theory and its topological data. We will work out the

entanglement entropy for a general Chern-Simons theory with gauge group G and level k

on general spatial topologies. We will then apply our results to the cases of most physical

interest. In addition to their intrinsic interest in topological field theory, our results are

relevant to the study of topological phases of condensed matter systems whose low energy

effective field theories are topological quantum field theories. Our results may also have

relevance in black hole physics in view of Witten’s conjecture on the relation between the

Bañados-Teitelboim-Zanelli black hole [11] of 2 + 1-dimensional gravity and Chern-Simons

gauge theory. [12] It might also prove interesting to compare these holographic results with

a direct computation of the gravitational entanglement entropy using the Chern-Simons

description of 2 + 1 dimensional gravity.

Although some of the concepts we discuss here can in principle have wider applicability,

in this paper we will only concern ourselves with topological field theories in two space

dimensions. It has been shown [13, 14] that for a field theory in two space dimensions that

is topological in a limit, the entanglement entropy for a large simply connected region A of

linear size L with a smooth boundary (a subset of an effectively infinite simply connected

system) has the form

SA = αL− γ, (1.2)

where α is a non-universal coefficient. This form holds provided the linear size L of the

region is large compared to any intrinsic length scale of the theory. The universal constant

term γ, known as the topological entropy, characterizes the topological state and it is a

property of a topological field theory. For a general topological field theory it is given

by [13, 14]

γ = lnD = ln

√∑

i

d2
i , (1.3)

where di are the quantum dimensions of the quasiparticles (labelled by i) of the excitation

spectrum associated with this phase, and D is the effective quantum dimension. [15]

Topological phases in two space dimensions are states of matter which satisfy the

following properties. They are “liquid” phases, translationally invariant ground states that

do not break spontaneously any symmetries of the system. On manifolds with a non-

trivial topology (e.g. a torus) the ground states exhibit a non-trivial degeneracy which is

robust since it cannot be lifted by the action of any local perturbation. In these phases

the excitation spectrum is gapped. In the limit of low energies and long distances the

wave functions of a set of excitations, vortices of these fluids, exhibit non-local properties

that do not depend on the positions of the excitations. The states of the excitations of a

topological state span a topologically protected Hilbert space, and the rate of growth of

the dimension of this Hilbert space (as a function of the number of excitations of type i) is

the quantum dimension di of the excitation. In the limit of a vanishing correlation length

ξ → 0, the effective field theory of a topological phase is a topological field theory. The

path integral (partition function) of a topological field theory is a topological quantity in

the sense that it is independent of the metric of the space. The prototype of a topological

field theory is Witten’s Chern-Simons gauge theory of the Jones polynomial [9, 10].

– 3 –
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The best known and most studied (both experimentally and theoretically) topological

phases in condensed matter are the fractional quantum Hall (FQH) fluids, incompressible

phases of two-dimensional electron gases (2DEG) in large magnetic fields (for a review

see ref. [16, 17]). Another experimentally accessible candidate for a topological phase is

the superconducting phase of the quasi-two-dimensional strongly correlated oxide Sr2RuO4

which appears to be a px+ipy superconductor and is also a topological state. [18, 19] Ultra-

cold bosonic gases in rotating magnetic traps have also been conjectured to form bosonic

analogues of the fractional quantum Hall states. [20]

The non-local behavior of the excitations of a topological phase in two space dimensions

is closely related to the braiding properties of their world lines which, in turn, determine

the analytic properties of their wave functions. These excitations are generally known as

anyons and carry fractional statistics. [21, 22] Excitations with Abelian fractional statistics

are labeled by one-dimensional representations of the braid group and their quantum di-

mensions di = 1, and their associated Hilbert spaces are one dimensional. Excitations with

non-Abelian statistics are labeled by multi-dimensional representations of the braid group,

have quantum dimensions di > 1, and their associated Hilbert spaces are multi-dimensional.

Such non-Abelian excitations, and their topologically protected Hilbert spaces, are the ba-

sis of the concept of topological quantum computation. [23 – 25]

In spite of its non-local nature, the topological entanglement entropy of FQH states

is actually of direct physical interest, and important for the characterization of quantum

Hall interferometers. Quantum interferometers of FQH fluids are devices which in principle

can detect the fractional statistics of the FQH quasiparticles. [26 – 34] It has recently been

shown [35 – 37] that a quantum point contact in a non-Abelian quantum Hall state actually

can act as a quantum disentangler. This is possible because point contacts in a quantum

Hall system essentially consist of places where the tunneling matrix elements between the

edge states is non-vanishing. From the point of view of the bulk FQH state this is a

non-local connection which disrupts its quantum correlations. Remarkably, Fendley and

coworkers [35 – 37] found that the change of the entanglement entropy induced by the point

contact is equal to the change in the Affleck-Ludwig entropy [38] of the edge states of the

FQH fluid. Thus, the topological entropy is a quantity of interest in the present effort to

develop interferometers for quantum Hall quasiparticles.

In this paper we investigate the universal properties of the entanglement entropy of

Chern-Simons gauge theory for a general compact gauge group at an arbitrary level k. We

give explicit results for SU(2)k and for several coset conformal filed theories of interest for

applications. We use our results to compute the entanglement entropy of fractional quan-

tum Hall topological fluids by computing this quantity directly at the level of the effective

topological field theory. By working directly in the topological limit we obtain directly the

O(1) term in the entropy, the topological entropy. All other size-dependent terms, includ-

ing the “area term”, become zero in this limit. Naturally, size-dependent terms will arise if

(irrelevant) corrections to the topological action, such as Maxwell/Yang-Mills type terms,

were to be included. Throughout this paper we will use the path integral representation

of Chern-Simons theory. To this end we will adapt the seminal results of Witten [9, 10]

for the partition functions of Chern-Simons gauge theories to the computation of the topo-
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logical entanglement entropy. We use the standard “replica” approach to compute the

entropy [39, 3]. This requires to understand what is the 3-manifold resulting from gluing n

copies of the system in a suitable fashion [3], needed to compute the entropy for a number

of cases of interest. The key aspect of our approach is the identification of a suitable config-

uration of Wilson loops for each case of interest and to compute it by reducing it to already

known cases by using surgeries. Alternatively, it is also possible to use a more conventional

approach using the wave function of the Chern-Simons gauge theory [10]. This approach

is technically more involved and will only be discussed briefly.

We consider first the case of a surface of genus zero (a sphere or a disk).1 For a

simply connected region we compute the topological entropy of the vacuum (ground) state

of the Chern-Simons theory on a sphere, and recover the result obtained by Kitaev and

Preskill [13], and of Levin and Wen [14], i.e., eqs.(1.2) and (1.3). Next we generalize

these results to the case of manifolds with non-vanishing genus (mainly a torus), which

have a finite-dimensional topologically protected degenerate vacuum sector. Here we also

consider the entanglement of multiply connected regions. We find that the entanglement

entropy of a simply connected region is independent of the genus of the manifold, even if

the vacuum sector is degenerate. In the case of a multiply-connected region, we find that

the entropy scales linearly with the number of components of the observed region only if

the vacuum sector is non-degenerate (genus zero). However, if the manifold has a non-

vanishing genus, and thus has a degenerate vacuum sector, in general the entanglement

entropy of multiply-connected regions is different for different states in the vacuum Hilbert

space. In other words, the entanglement entropy, aside from the purely topological entropy,

has additional contributions that depend on the choice of state i.e., on the coefficients of

its wave function and on the representation carried by the state. We also compute the

entanglement entropy of a simply connected region with several quasiparticles, i.e. operators

represented by punctures carrying non-trivial representations. In this case we find that the

entanglement entropy generally depends on the conformal blocks in which these operators

can fuse, and hence depend explicitly on the structure of the fusion rules. These results

indicate that measurements of the entanglement entropy can, in principle, be used to

determine the full structure of the underlying effective topological theory. Finally, we apply

these results to the computation of the entanglement entropies of fractional quantum Hall

fluids. Here we derive the modular S-matrices for several coset CFTs needed to compute

the entanglement entropies for non-Abelian FQH states. The modular S-matrix for the

coset
(

̂SU(2)/U(1)
)
k
× Û(1)k(Mk+2) RCFT is new.

This paper is organized as follows. In section 2 we set up the calculation of the topo-

logical entanglement entropy γ in Chern-Simons gauge theories. In subsection 2.1 we show

how the computation of the entropy can be carried out using the methods developed by

Witten [9] and use them to compute the entropy for the simplest cases, a simply connected

region on a sphere (subsection 2.2) and a torus (subsection 2.3), and multiply-connected

1As this manuscript was being completed we became aware of the very recent work of K. Hikami [40],

who calculated entanglement entropies in SU(2)k theories on the sphere using a skein relation approach.

Our results agree with Hikami’s where they overlap.
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regions on a sphere (subsection 2.4) and on a torus (subsection 2.5). In section 3 we present

a calculation of the entanglement entropy in the presence of punctures (i.e. quasiparticles)

carrying different representation labels. Here we discuss the case of four quasiparticles

on S2 (subsection 3.1) and discuss two different cases, paired and not paired, as well as

three quasiparticles on S2 (subsection 3.2). In section 4 we present the calculation of the

entanglement entropy for both Abelian U(1)k (subsection 4.1) and non-Abelian FQH flu-

ids, in terms of coset Chern-Simons gauge theories (subsections 4.2 and 4.3). Section 5

is devoted to the conclusions. The hydrodynamic, Chern-Simons, description of the FQH

fluids (both Abelian and non-Abelian) is summarized in appendix A, the calculation of

the modular S-matrix for SU(N)k is presented in appendix B, and the modular S-matrix

of the
(

̂SU(2)/U(1)
)
k
× Û(1)k(Mk+2) RCFT, needed for the parafermionic FQH states, is

presented in appendix C.

2. Entanglement entropy and Chern-Simons gauge theory

In this paper, we will consider entanglement entropy in Chern-Simons theory in three

dimensions. As we will argue in what follows, the entanglement entropy may be obtained by

computing a Chern-Simons path integral on certain 3-geometries, which we systematically

obtain through a ‘gluing’ procedure. To see what this procedure should be, we review

here the conceptually simpler case of a scalar field theory. The 2-dimensional case was

described by Calabrese and Cardy. [3] Consider a spatial domain which we slice into two,

labeled A and B. These regions may be connected or not, simply connected or not. We

label the interface between A and B by I = ∂A = ∂B, which may in general consist of

several components. We label the degrees of freedom as φ. To make the discussion more

straightforward, we will consider the corresponding finite temperature density matrix

ρ [{ϕ0(~x)}, {ϕβ(~x)}] =
1

Z(β)
〈{ϕ0(~x)}|e−βĤ |{ϕβ(~x)}〉 (2.1)

=

∫ ∏

~x,τ

[dφ(~x, τ)] e−SE
∏

~x

δ[φ(~x, 0)−ϕ0(~x)]δ[φ(~x, β)−ϕβ(~x)],(2.2)

where we specify the state by a spatial configuration at τ = 0, β. In this language, a trace

is obtained by path integration over ϕ0 and ϕβ . Having split the spatial domain into pieces,

we may then obtain the reduced density matrix ρA by tracing over B,

ρA
[
{ϕ0(~x)},{ϕβ(~x)}

∣∣~x ∈ A
]
=

∫ (∏

~x∈B
[dϕ0(~x)dϕβ(~x)] δ [ϕ0(~x)−ϕβ(~x)]

)
ρ [{ϕ0(~x)}, {ϕβ(~x)}] .

(2.3)

The entanglement entropy will be obtained by a replica trick,

SA = −trρA ln ρA = − d

dn
trρnA

∣∣∣
n=1

(2.4)

– 6 –
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ABβ
Figure 1: Conceptual picture of ρA. The trace over B corresponds to gluing τ = 0 to τ = β in the

B region, leaving a cut open in the A region.

ABββ
β 3β

Figure 2: trρ3

A is obtained by gluing three copies of the diagram in figure 1 back to back along

the cut in the A region.

(we expect that trρnA will have a unique analytic continuation in n for n ≥ 1). Finally, trρnA
is obtained by taking n copies of ρA and ‘gluing’ them together appropriately

trρnA=

∫ n∏

k=1

{∏

x

[
dϕ

(k)
0 (~x)dϕ

(k)
β (~x)

]∏

x∈A
δ
[
ϕ

(k)
0 (~x) − ϕ

(k+1)
β (~x)

]∏

x∈B
δ
[
ϕ

(k)
0 (~x) − ϕ

(k)
β (~x)

]

ρ
[
{ϕ(k)

0 (~x)}, {ϕ(k+1)
β (~x)}

]}
. (2.5)

This path integral may be interpreted as a scalar field theory defined on a glued manifold,

of the form displayed in figures 1, 2.

Now, in fact we are not really interested in the entanglement entropy obtained from

the finite temperature density matrix. Instead, we would like to pick a pure state (of the

whole system); this may be achieved here by taking β → ∞. In this limit, the system will

project down to the ground state. There is a subtlety here, that will in fact arise in the

Chern-Simons theory (or generically in any topological field theory), in that the ground

state need not be unique. Thus, the procedure we have outlined is not powerful enough to

select a particular degenerate pure state. In the particular case of Chern-Simons theory, we

will take the above construction as indicative that we should consider the Chern-Simons

path integral on the glued geometry; in this construction, it is clear how to make the choice

of a pure state, as we will detail a little later.

In the case of Chern-Simons theory, we can formally perform the above construction

by identifying the Chern-Simons wave functional; assuming holomorphic factorization, this

– 7 –
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may be written as a WZW path integral2

〈B̄i|〈Āi|Ψ〉∼
∫

[dgA,idgB,i]e
−kIA(gA,i)−kIB(gB,i)− k

2π

R

ΣA
trĀig

−1
A,i∂gA,i− k

2π

R

ΣB
trB̄ig

−1
B,i∂gB,i . (2.6)

Here, I(g) is a WZW action. The expression (2.6) should be interpreted as a sum over

histories with a spatial section of fixed topology. Here, we have split the integral into

contributions of fields in regions A and B. Formally, trρnA may then be constructed by

gluing together suitable such factors,

∫ n∏

k=1

[dµ(Ak)dµ(Bk)]〈B̄1|〈Ā1|Ψ〉〈Ψ|B1〉|A2〉〈B̄2|〈Ā2|Ψ〉〈Ψ|B2〉|A3〉 . . .〈B̄n|〈Ān|Ψ〉〈Ψ|Bn〉|A1〉.

(2.7)

This can be interpreted as Chern-Simons theory on a glued 3-geometry. This 3-geometry

will be determined by a choice of spatial topology (that is, a Riemann surface Σ of genus g)

and a choice of cutting into A and B regions. The original 3-geometry (before gluing) may

be mapped to a solid geometry Σ̃, consisting of Σ and its interior. It is well known that

the Hilbert space HΣ of this theory is accounted for by the appropriate conformal blocks of

the corresponding WZW conformal field theory. For example, for the sphere S2 there is a

unique state, while for the torus T 2, the various degenerate states may be obtained by plac-

ing Wilson lines in representation R along the centre of the solid torus. For higher genus, we

can consider the various conformal blocks directly. Thus, the choice of pure state is made

here by a choice of conformal block (equivalently, for the torus, a choice of Wilson loop).

2.1 Modular properties

Indeed, it is well known that the states of a Chern-Simons theory are accounted for by the

conformal blocks of a conformal field theory. As a result, the Chern-Simons states may be

identified with characters. The modular S-matrix of the conformal field theory will then

enter in calculations of Wilson loop observables in the Chern-Simons theory, as was exempli-

fied by Witten [9]. Consequently, the entanglement entropy will generically depend on ma-

trix elements of the modular S-matrix. Given a set of characters χ(τ) of a CFT, one writes

χ(−1/τ) = Sχ(τ), (2.8)

which should be understood as matrix multiplication. The characters are indexed by a set

of quantum numbers, which in the case of affine algebras can be taken to be representa-

tions. In this paper, we will not need to specify the precise Chern-Simons theory (that is

the calculations are valid in general), although physical applications will imply a choice.

An example of interest is ŜU(2)k WZW, in which representations R̂j are labelled by a

half-integer j = 0, 1/2, . . . , k/2, and

χ
(k)
j (−1/τ) =

∑

j′

S(k)
j
j′

χ
(k)
j′ (τ), (2.9)

2Written in this form, the gauge field measure includes a factor e
k

2π

R

trĀA.
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where

S(k)
j
j′

=

√
2

k + 2
sin

[
π(2j + 1)(2j′ + 1)

k + 2

]
. (2.10)

More generally, the S-matrix is assumed to be unitary. Thus, we have

Sij
(
S†
)
j

k
= δi

k, (2.11)

while applying S twice corresponds to charge conjugation3

(
S2
)
i

j
= Ci

j = δi
j̄ . (2.12)

Also of importance are the fusion rules for two representations R̂i × R̂j . The multiplicity

of representation R̂k in the fusion is denoted by Nij
k which are related to the modular

S-matrix by the Verlinde formula

Nij
k =

∑

ℓ

SiℓSjℓ(S−1)ℓ
k

S0
ℓ

(2.13)

The quantum dimension is defined as

dj =
S0

j

S0
0 . (2.14)

For ŜU(2)k, the quantum dimensions are

dj =
sin
(
π(2j+1)
k+2

)

sin
(

π
k+2

) . (2.15)

In section 4 we give generalizations of these formulae to other CFTs of interest.

We note that the unitarity condition implies

(
S0

0
)−1

=

√∑

j

|dj |2 = D. (2.16)

In the Chern-Simons theory, we will be led to evaluate the partition function on various

3-geometries with Wilson loops. These can be systematically computed by a series of

“surgery” operations [9]. The result of these computations is that the partition functions

depend on various matrix elements of modular matrices. For example,

Z
(
S3, R̂j

)
= S0

j, (2.17)

where the notation on the left means the Chern-Simons partition function on S3 with a

Wilson loop in representation R̂j (where j is an index labeling representations).

3The notation j̄ refers to the conjugate representation to that labelled by j.
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A BbA B
b
bθ=

Figure 3: Shading implies a solid 3-ball. With a one-component interface, the A and B regions

are disks. It is useful in the following constructions to view the 3-ball as a disk rotated about an

axis passing through the origin, as shown at right.

Another basic result that we will use repeatedly applies to a 3-manifold M which is the

connected sum of two 3-manifolds M1 and M2 joined along an S2. We have (eq. (4.1) in [9])

Z(M) · Z(S3) = Z(M1) · Z(M2). (2.18)

This result relies crucially on the fact that the Hilbert space for S2 is one dimensional. Sim-

ilarly, using the same reasoning, we can deduce that if M is M1 and M2 joined along n S2’s,

Z(M) =
Z(M1) · Z(M2)

Z(S3)n
. (2.19)

To demonstrate this, we note that the path integral on a connected sum of M1 and M2

(that is, M1 and M2 joined through S2’s) can be thought of as the overlap of states |χ1〉
and |χ2〉 each defined on the interface S2, Z(M1 + M2) = 〈χ1|χ2〉. Because the Hilbert

spaces involved are one-dimensional, we can insert a state in between which topologically

corresponds to capping off the connection (that is, we sew in half of a 3-ball onto M1 and

half of a 3-ball (with opposite orientation) onto M2). Thus,

Z(M1 +M2) =
〈χ1|χ3〉〈χ3|χ2〉

〈χ3|χ3〉
=
Z(M1) · Z(M2)

Z(S3)
, (2.20)

the latter equality obtaining because 〈χ3|χ3〉 corresponds to a 3-sphere. We can repeat

this construction, capping off each join, to obtain the more general result eq. (2.19). In the

following, this is the general surgery operation that we employ repeatedly.

2.2 S2 with one A-B interface

Let us begin with the simplest case, in which the spatial topology is a 2-sphere. The Hilbert

space on S2 is one dimensional, and so there is only one choice of state. The 3-geometry

is the 3-ball shown in figure 3. If we take the A and B regions to be connected, then they

are disks. To construct trρnA, we glue 2n such pieces together. In figure 4, we show how to

systematically perform this gluing. We have drawn the n = 2 case explicitly, but it is not

hard to generalize to higher n. In the figure, we have used 1 and 2 to label |ψ〉1 and 〈ψ|1,
3 and 4 for |ψ〉2 and 〈ψ|2. The four slices form four 3-balls (or as shown, rotated disks);

when glued together to form trρnA, we find an S2, rotated about the axis, which has the
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Figure 4: For spatial topology S2 with one interface component, we explicitly show the construc-

tion of trρ2

A. The overall manifold is generated by four pieces of disks glued together one after

another and rotated along the same axis as in figure 3.

topology S3. One can easily check that for higher n, we obtain the same result, the S2

being obtained by sequentially gluing 2n disks. Thus we have the normalized trace,

trρnA(S2,1)(
trρA(S2,1)

)n =
Z(S3)

(Z(S3))n
= (Z(S3))1−n = (S0

0)1−n, (2.21)

where we have used formula (2.17) given above. Finally, using eq. (2.4), we obtain

S
(S2,1)
A = lnS0

0. (2.22)

This result applies to any Chern-Simons theory. Since S0
0 = 1/D, we recover the known

result [13, 14] for the topological entropy for a simply connected region of a sphere S2 (or

a disk) in terms of the effective quantum dimension D:

S
(S2,1)
A = lnS0

0 = − lnD. (2.23)

In the case of U(1)m, we have

S0
0 =

1√∑
j |dj |2

=
1√
m
, (2.24)

and hence

S
(S2,1)
A = − ln

√
m. (2.25)

For ŜU(2)k, we obtain

S
(S2,1)
A = ln

(√
2

k + 2
sin

π

k + 2

)
. (2.26)

For k = 1, 2, 3, this evaluates to

SA = − ln
√

2, − ln 2, − ln

(√√
5 + 5

)
, (2.27)

respectively. For applications of these formulae to physical models, see section 4.
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Figure 5: The solid torus with A and B regions indicated as on the l.h.s. is topologically the same

as a solid 3-ball with a solid torus “planted” in the A region.A1 A2
b
bB1B2S2 S2θS2×S1 S3 S2×S1RR RR

Figure 6: The space Xn=2, obtained by gluing n = 2 copies of the space shown in figure 5. The

result is an S3 joined to two copies of S2 × S1 along S2’s. For general n, the glued geometry Xn

consists of an S3 joined in this way to n S2 × S1’s.

2.3 T 2 with one component A-B interface

The Hilbert space on T 2 is isomorphic to the space of integrable representations R̂j of the

Kac-Moody algebra. These states are generated by doing the path integral on a solid torus

with Wilson loop in representation R̂j lying along the non-contractible loop at the centre.

We will consider first a slicing of the torus into A and B regions such that there is a single

connected interface component, as shown in figure 5. To define the entanglement entropy,

we must choose a pure state, and here we have a choice. To begin, let us first choose the

trivial representation (equivalent to no Wilson loop). On the right in figure 5, we have

redrawn the solid torus as a ball with a solid torus attached in the A region. It is useful to

consider the solid torus as a solid ball with a handle attached in the A region, since we have

already studied the solid ball in the previous subsection, and to compute trρnA here, we

need to follow that analysis and also keep track of the gluing of the extra toroidal fixtures.

Note that a solid torus can be thought of as D2 × S1, and two copies glued together (with

opposite orientations) gives an S2 × S1. The result of the gluing for n = 2 is shown in

figure 6. Thus the resulting manifold will be the connected sum of an S3 and n S2 × S1’s

joined along n S2’s. Thus, applying eq. (2.19) for M1 = S3 and M2 n disjoint copies of

S2 × S1, we obtain

trρnA(T 2,1)(
trρA(T 2,1)

)n =
1

Z(S2 × S1)n
Z(S3)Z(S2 × S1)n

Z(S3)n
= (Z(S3))1−n = (S0

0)1−n. (2.28)

The first factor after the first equal sign comes from the normalizing factor (for n = 1, the

topology is just S2×S1). We note that this result coincides with the S2 result. As we shall
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Figure 7: Two component interface on spatial sphere. It is useful to think of this as two joined

3-balls.

see, the commonality of these two examples is that the interface is the same; the topology

of the A and B regions themselves does not contribute.

It is simple to repeat this construction for other pure states, that is including a Wilson

loop in representation R̂j inside the solid torus. This Wilson loop is as shown in figure 5. In

the gluing above, we will now have a D2 ×S1 with Wilson loop in representation R̂j glued

to a D2 × S1 of opposite orientation with Wilson loop in representation R̂j (the conjugate

state), as indicated in figure 6. Thus, we have

trρn
A(T 2,R̂j)(

trρA(T 2,R̂j)

)n =
1

Z
(
S2×S1, R̂j , R̂j

)n
Z(S3)Z

(
S2 × S1, R̂j , R̂j

)n

Z(S3)n
= Z(S3)1−n = (S0

0)1−n.

(2.29)

In fact this result can be generalized further, to any pure state |ψ〉 =
∑

j ψj |R̂j〉,

trρnA(T 2,ψ)(
trρA(T 2,ψ)

)n =

∑
j1,j2,...

ψj1ψ
∗
j2
ψj2ψ

∗
j3
. . . ψjnψ

∗
j1
Z(Xn, R̂j1, R̂j1 , . . .)(∑

j |ψj |2Z(S2 × S1, R̂j , R̂j)
)n , (2.30)

where we have denoted the glued 3-geometry asXn; the Wilson loops R̂j and R̂j are located

along the jth toroidal fixture. Performing surgeries as in eq. (2.19) gives

trρnA(T 2,ψ)(
trρA(T 2,ψ)

)n =

∑
j1,j2,...

ψj1ψ
∗
j2
ψj2ψ

∗
j3
. . . ψjnψ

∗
j1

∏
k Z(S2×S1, R̂k, R̂k)Z(S3)1−n

(∑
j |ψj |2Z(S2 × S1, R̂j , R̂j)

)n =(S0
0)1−n.

(2.31)

So we conclude that, at least for this slicing into A and B regions, the entanglement entropy

is insensitive to which degenerate pure state we consider. This statement is not generally

true, as we will see.

2.4 S2 with two-component AB interface

Next let’s study the case where A and B meet at an interface with two components. For

S2, the only distinct choice is to have two disconnected B regions, as in figure 7. If we

think of this as two solid 3-balls joined together, then we can do the gluing for each 3-ball

separately, and then account for the joining. The result is a pair of S3’s, joined along n = 2

S2’s, as indicated in figure 8 for the n = 2 case. Thus we find

trρnA(S2,2)(
trρA(S2,2)

)n =
(Z(S3))−nZ(S3)2

(Z(S3))n
= (Z(S3))2(1−n) = (S0

0)2(1−n). (2.32)
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Figure 8: S2 with two-component interface. For n = 2, gluing two copies of figure 7 together gives

a topology that can be thought of as two S3’s that are joined along n = 2 S2’s.A b2 b2 BB b1 BR B RAAb1=
Figure 9: The first of two ways of slicing the toroidal space with a two-component interface. B

has two components. This may be thought of as two 3-balls joined by two tubes.

It is not difficult to envision the generalization of this result to an M -component

interface on S2, and we find

S
(M)
A = M lnS0

0. (2.33)

2.5 T 2 with two-component AB interface

In the case of T 2 with a 2-component interface, there are a number of new choices to be

made. There are essentially two distinct ways to slice the spatial surface, which we consider

in turn.

2.5.1 T 2: disconnected B regions

The first possibility is shown in figure 9. Here, since we have learned that it is the features

of the interface that matter to entanglement entropy, we expect that this would give the

same result as in the last subsection. The glued geometry is shown in figure 10 for n = 2.

Note that the Wilson loops are located as shown in the figure. For this case, we find

trρn
A(T 2,2,R̂)(

trρA(T 2,2,R̂)

)n =
1(

Z
(
S2 × S1, R̂, R̂

))n

((
Z
(
S3
))2

Z
(
S2 × S1, R̂, R̂

))n

Z (S3)2n

= (Z(S3))2(1−n) = (S0
0)2(1−n), (2.34)
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Figure 10: The glued geometry for n = 2 in the case of two disconnected B regions on a spatial

torus. b1 b2 Bb1 B AAR BA b2 R=
Figure 11: The second of two ways of slicing the toroidal space with a two-component interface.

B has a single component. Again, this may be thought of as two 3-balls joined by two tubes, but a

Wilson loop threads the interface.

which indeed is the same result, for any representation R, as for the spherical topology

with two interface components.

2.5.2 T 2: connected B region

The second possibility, shown in figure 11, will present new complications. The new feature

here is that the Wilson loops thread through the interface between the A and B regions. We

will find that this leads to a dependence on the representation in the entanglement entropy.

Again, this computation can be thought of as a pair of 3-balls connected by tubes. Upon

performing the gluing, we obtain a pair of S3’s, connected along 2n S2’s, with Wilson loops

routed as shown in figure 12. We find

tr
(
ρn
A(T 2,2,R̂j)

)

tr
(
ρA(T 2,2,R̂j)

)n =
Z(S3, R̂j)

−4nZ(S3, R̂j)
2nZ(S3, R̂j)

2

Z(S2 × S1, R̂j , R̂j)n
= Z(S3, R̂j)

2(1−n) = (S0
j)2(1−n).

(2.35)

To obtain this result, we have generalized the formula (2.19) to the case where we also

have a Wilson line. We can do this because the Hilbert space of Chern-Simons theory on

S2 with two complex conjugate charges is one dimensional, just as S2 with no punctures.

As we explained earlier, the one-dimensionality allows us to cut and glue in half-S3 caps;
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Figure 12: The glued geometry for n = 2 in the case of a single connected B region on a spatial

torus.

the same formula works for the half-S3 with two conjugate punctures on the surface of the

cap. The connection of these punctures inside the S3 forms a Wilson loop.

Thus, in the numerator of eq. (2.35), the first factor corrects for the inclusion of the

endcaps (a total of 4 half-S3’s per tube), the second factor comes from each of the 2n

capped tubes (which are just S3’s with a Wilson loop R̂j) while the last factor comes from

each of the two “large” S3’s that each have been capped 2n times. The routing of the

Wilson loops through the original 2n tubes is such that after all of this surgery, there is a

single Wilson loop in R̂j on each of these large S3’s.

It is then straightforward to show that for any state |ψ〉 =
∑

j ψj |R̂j〉,

trρnA(T 2,2,ψ)(
trρA(T 2,2,ψ)

)n =
trA

(∑
i,j ψjψ

∗
i trB |R̂j〉〈R̂i|

)n
(
trρA(T 2,2,ψ)

)n

=
trA

(∑
j ψjψ

∗
j ρA(T 2,2,R̂j)

)n
(
trρA(T 2,2,ψ)

)n

=

∏n
p=1

∑
jp
|ψjp |2tr

(
ρA(T 2,2,R̂j1

) . . . ρA(T 2,2,R̂jn)

)

(
trρA(T 2,2,ψ)

)n

=

∑
j |ψj |2ntr

(
ρA(T 2,2,R̂j)

)n
(
trρA(T 2,2,ψ)

)n

=

∑
j |ψj |2n(S0

j)2(1−n)

(
∑

j |ψj |2)n
. (2.36)

Here we have used the fact that each S2 we cut along should have total charge zero,

otherwise the path integral vanishes. We thus obtain the entropy

SA(T 2,2,ψ) =
∑

j

[
2|ψj |2 lnS0

j − |ψj |2 ln |ψj |2
]
. (2.37)
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Figure 13: The wavefunctional with quasiparticles is related to a history with Wilson lines coming

in from t = −∞ to punctures on the spatial surface. On the left, time runs vertically to a spatial

slice. On the right is the equivalent ‘radial time’ view.

Since we can interpret |ψj |2 as a probability pj, the second term has the familiar form

−p ln p. More precisely, note that this can be rewritten

SA(T 2,2,ψ) = 2 lnS0
0 −

∑

j

d2
j

[
|ψj |2
d2
j

ln
|ψj |2
d2
j

]
. (2.38)

These calculations can be generalized to higher genus spatial surfaces, using similar

techniques as we have displayed here. The entanglement entropy is sensitive to the topology

only in cases where we choose carefully the interface between the A and B regions. Finally,

we note that eq. (2.38) is indicative of a more general result that says that the entanglement

entropy depends on the number of interfaces, the states and how they fuse, and their

quantum dimensions. Notice that in eq. (2.38) the quantum dimension dj appears squared.

This is so because there are two interface components in this case. In general there will

be a factor of a quantum dimension for each interface component. However, in general the

entanglement entropy will also depend on the non-universal amplitudes in which the state

appears in the conformal block. Hence in general the entanglement entropy depends on

the universal properties of the topological field theory and on the specific form of the state.

3. Quasiparticle punctures

It is also of interest to consider entanglement entropy in the presence of quasi-particles.

These will correspond to punctures on the spatial surface, and to each puncture we associate

a representation R̂j. Here we will consider just the simplest possibilities, but in so doing,

we will explore how to write the entanglement entropy in a more convenient basis, that of

conformal blocks.

3.1 S2 with four quasi-particles

A simple case is S2 with four quasiparticles. We will focus on ŜU(N)k, where N ≥ 2 and

k ≥ 2, with punctures carrying 2 fundamental and 2 antifundamental representations on

S2. We will use α̂ and α̂∗ to denote fundamental and antifundamental representations,
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Figure 14: The separation of the sphere into A and B regions gives three situations, depending

on the placement of the punctures. We consider these separately in the text.bA Bα
α*

α*
α bA Bα

α*
α*
α|ϕ1> |ϕ2>

Figure 15: The two states represented by Wilson lines connecting punctures.

respectively. We may think of these punctures as being connected by oriented Wilson

lines that extend into the interior; in this sense, they correspond to timelike Wilson lines

extending in from t = −∞. We note that these lines may braid. So we should expect

that entanglement entropy may sense this braiding. Now let us consider the entanglement

entropy, where we simply divide the sphere into two halves. There are actually several

distinct cases to consider. If the interface between A and B cuts one Wilson line (that is,

A contains one puncture, say α̂, and B contains three, as in figure 14(c)), the result will be

SA = lnS0
α̂. (3.1)

If A and B each contain two punctures, there are two possibilities. The first possibility has

α̂ and α̂∗ punctures in both A and B regions; in this case, the Wilson lines could connect

α̂Aα̂
∗
A and α̂Bα̂

∗
B , or they could connect α̂Aα̂

∗
B and α̂Bα̂

∗
A. The second possibility is that A

contains two α̂’s and B two α̂∗’s; in this case, there are two possible connections of Wilson

lines, and these differ by braiding. We will see that these choices correspond to choices of

conformal blocks in the fusion of α̂ with α̂∗.

3.1.1 B with α and α∗

For k ≥ 2, the Hilbert space on S2 with 2 pairs of α̂ and α̂∗’s is two dimensional. Let’s

pick the two linearly independent states as follows. After gluing along B,4 there are four

types of density matrix obtained; these are shown in figure 16. If we begin with a pure

state |φ〉 = a|φ1〉+ b|φ2〉, we have ρA = aa∗ρ11 + ab∗ρ12 + a∗bρ21 + bb∗ρ22. Gluing n copies

of these together to form trρA
n gives rise to an S3 made from all the possible combinations

4The gluing map is taken to identify punctures, and thus connects the Wilson lines.
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Figure 16: Upon gluing to form ρA, we find four matrix elements.

of ρij ’s. To compute trρA
n, we need to identify the Wilson loops formed in each case. Each

combination contains a number of fundamental Wilson loops, each of which contributes

a factor S0
α̂

S0
0 = dα̂. For each appearance of ρ11, there will be two such factors. For each

factor of ρ12 or ρ21 there will be one such factor. Finally, factors of ρ22 do not increase the

number of loops; however, when the contribution to trρA
n is n factors of ρ22, there are two

loops. Thus, we arrive at

Zn

S0
0 =

∑

j,k,l

n!

j!k!l!(n − j − k − l)!
(aa∗)j(ab∗)k(a∗b)l(bb∗)n−j−k−ld2j+k+l

α̂ + (bb∗)n(d2
α̂ − 1)

= [aa∗d2
α̂ + (ab∗ + a∗b)dα̂ + bb∗]n + (bb∗)n(d2

α̂ − 1). (3.2)

After normalization,

Zn
Z1

n = (S0
0)1−n

{[
aa∗d2

α̂ + (ab∗ + a∗b)dα̂ + bb∗

(aa∗ + bb∗)d2
α̂ + (ab∗ + a∗b)dα̂

]n
(3.3)

+

[
bb∗

(aa∗ + bb∗)d2
α̂ + (ab∗ + a∗b)dα̂

]n [
d2
α̂ − 1

]}
.

Thus we find

SA = lnS0
0 − λ1 lnλ1 − (d2

α̂ − 1)λ2 lnλ2, (3.4)

where

λ1 =
|adα̂ + b|2

|adα̂ + b|2 + (d2
α̂ − 1)|b|2 ,

λ2 =
|b|2

|adα̂ + b|2 + (d2
α̂ − 1)|b|2 . (3.5)

We notice that while the definition of |φ1〉 and |φ2〉 makes the calculation transparent, they

are not orthonormal. In fact, we have

〈φi|φj〉 = S0
0dα̂

(
dα̂ 1

1 dα̂

)
. (3.6)
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If we define (|φ′1〉
|φ′2〉

)
=

1

dα̂
√

S0
0
√
d2
α̂ − 1

(√
d2
α̂ − 1 0

−1 dα̂

)(|φ1〉
|φ2〉

)
, (3.7)

we can show that the new states are orthonormal. In fact, the new states |φ′1〉 and |φ′2〉
correspond to the conformal blocks associated with the trivial and adjoint representa-

tion θ̂, respectively, which appear in α̂ × α̂∗. We have just calculated the fusion matrix.

|φ′1〉 and |φ′2〉 are the conformal blocks in one channel, while similarly 1

dα̂

√
S0

0
|φ2〉 and

1

dα̂

√
S0

0
√
d2α̂−1

(−|φ2〉 + dα̂|φ1〉) should be the blocks in the other channel, using their rela-

tion, we can easily get the fusion matrix

F [ α α∗

α∗ α ] =
1

dα̂

(
1

√
(dα̂)2 − 1√

(dα̂)2 − 1 −1

)
, (3.8)

where, dα̂ is (as before) the quantum dimension of the fundamental representation α̂, and√
d2
α̂ − 1 ≡ dθ̂ is the quantum dimension of the adjoint representation θ̂.

In the conformal block basis the amplitudes become

(
a′

b′

)
=

(√
S0

0dα̂
√

S0
0

0
√

S0
0
√
d2
α̂ − 1

)(
a

b

)
. (3.9)

In terms of the wavefunction in the orthonormal conformal block basis,

λ1 =
|a′|2

|a′|2 + |b′|2 , λ2 =
1

(d2
α̂ − 1)

|b′|2
|a′|2 + |b′|2 . (3.10)

In the entropy formula eq. (3.4), we note that there is a degeneracy factor (d2
α̂−1) associated

with the |φ′2〉 state. Although in the example we have considered here, we took punctures

carrying fundamentals, we see that the entanglement entropy is sensitive to the conformal

block that the punctures in A (or B) may fuse to. This tells us if we label a state in terms of

fusion or equivalently conformal blocks, we can read off the entanglement entropy directly

from the representation around the interfaces.

3.1.2 B with α∗ and α∗

To confirm this reasoning, let us compute carefully the second case, which consists of two

fundamental punctures in A. In this case, there are two states, shown in figure 17. The

fusion rules tell us that the representations cut by the interface are the symmetric and

antisymmetric rank two tensor product of fundamental representations. Let’s call them

σ̂ and ω̂, respectively. Of course in SU(2), they are the same as θ̂ and 0. As before, we

first glue along B and get four possible density matrices, as shown in figure 18. In both

ρ11 and ρ22, we have two unlinked Wilson lines, so when they appear in trρnA, they will

not give rise to factors (as was the case for ρ22 in the last example). Now, ρ12 and ρ21

have crossed Wilson lines with opposite orientation. In this case we have to be careful

with the framing of the link and assign to each overcrossing a Dehn twist factor t = e2πihα̂

– 20 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
6

bA Bαα α*α* bA Bαα α*α*|ϕ1> |ϕ2>
Figure 17: The two states represented by Wilson lines connecting punctures.

ρ11 ρ12
ρ22

bA A*αα α*α* bA A*
bA A* bA A*

αα α*α*αα α*α* αα α*α*ρ21
Figure 18: Upon gluing to form ρA, we find four matrix elements. Note that ρ12 and ρ21 have the

Wilson lines crossed in opposite senses.

(see appendix B). So, if a ρ12 appears together with ρ21, they would just give an unlinked

pair of lines, and thus the Dehn twists cancel each other. Thus only the difference in the

number of each matters. To get the full trρA
n, we need to know the expectation value of

a general braid with j crossings; we call this Xj . We already know X0 = S0
0(dα̂)2 and

X1 = S0
0tdα̂. If we denote by Li a pair of lines with i crossings, we have the skein relation

αL+1 + βL0 + γL−1 = 0, and then

αXj + βXj−1 + γXj−2 = 0. (3.11)

If we define q = e−2πi/(N+k), we have α
β = q−1/(2N)

q1/2−q−1/2 and γ
β = − q1/(2N)

q1/2−q−1/2 , thus

Xj + q
1
2
+ 1

2N Xj−1 =q−
1
2
+ 1

2N

(
Xj−1 + q

1
2
+ 1

2N Xj−2

)
=q(−

1
2
+ 1

2N
)(j−1)S0

0
[
tdα̂ + q

1
2
+ 1

2N (dα̂)2
]
.

(3.12)

Using the notation [x] ≡ qx/2−q−x/2

q1/2−q−1/2 (in which case dα̂ = [N ]) and t = q
1−N2

2N , we solve the

difference equation to get

Xj

S0
0 =

(
q

1−N
2N

)j [N + 1][N ]

[2]
+
(
−q 1+N

2N

)j [N ][N − 1]

[2]
. (3.13)
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This formula is valid for all integer j. Finally,

Zn

S0
0 =

∑

j,k,l

n!

j!k!l!(n − j − k − l)!
(aa∗)j(ab∗)k(a∗b)l(bb∗)n−j−k−l

Xl−k
S0

0

=
[N ][N + 1]

[2]

∣∣∣a+ bq
1−N
2N

∣∣∣
2n

+
[N ][N − 1]

[2]

∣∣∣a− bq
1+N
2N

∣∣∣
2n
. (3.14)

We recognize in these expressions the quantum dimensions

dσ̂ =
[N ][N + 1]

[2]
, dω̂ =

[N ][N − 1]

[2]
. (3.15)

The entropy then takes the form

SA = lnS0
0 − dω̂λ1 lnλ1 − dσ̂λ2 lnλ2, (3.16)

where

λ1 =

∣∣∣a− bq
1+N
2N

∣∣∣
2

dσ̂

∣∣∣a+ bq
1−N
2N

∣∣∣
2
+ dω̂

∣∣∣a− bq
1+N
2N

∣∣∣
2 ,

λ2 =

∣∣∣a+ bq
1−N
2N

∣∣∣
2

dσ̂

∣∣∣a+ bq
1−N
2N

∣∣∣
2
+ dω̂

∣∣∣a− bq
1+N
2N

∣∣∣
2 . (3.17)

λ1 and λ2 indicate an orthonormal basis, corresponding to the two conformal blocks. For

the old basis, we have

〈φi|φj〉 = S0
0dα̂

(
dα̂ t

t∗ dα̂

)
. (3.18)

We can define a new basis as follows,

(|φ′1〉
|φ′2〉

)
=

1

[2]
√

S0
0dσ̂dω̂

(√
dσ̂q

− 1
2 −q− 1

2N
√
dσ̂√

dω̂q
1
2 q−

1
2N

√
dω̂

)(|φ1〉
|φ2〉

)
. (3.19)

Again we can calculate the fusion matrix in this case. |φ′1〉 and |φ′2〉 are conformal blocks in

the horizontal channel, while one choice of the conformal blocks in the vertical channel will

be 1√
S0

0dα̂

|φ1〉 and q−
N
2√

S0
0dα̂

√
d2α̂−1

(|φ1〉 − t∗dα̂|φ2〉). Using their relation, we can calculate

the fusion matrix for ŜU(N)k as

F [ α α∗

α α∗ ] =
1

dα̂

(√
dω̂

√
dσ̂√

dσ̂ −
√
dω̂

)
. (3.20)

When N = 2 there’s no difference between α and α∗, and it matches the result of the

previous subsection.

The wave function in the new conformal block basis is
(
a′

b′

)
=

(√
S0

0
√
dω̂ −q 1

2N
+ 1

2

√
S0

0
√
dω̂√

S0
0
√
dσ̂ q

1
2N

− 1
2

√
S0

0
√
dσ̂

)(
a

b

)
. (3.21)
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bA Bα
α* θ

Figure 19: Sphere with three punctures, chosen as representations α, α∗, θ.

ρ1 ρ2
bA A*αα* α*α bA A*αα* α*α

Figure 20: The two density matrix elements in the case of the three-punctured sphere.

In terms of wave functions under the conformal block states,

λ1 =
1

dω̂

|a′|2
|a′|2 + |b′|2 , λ2 =

1

dσ̂

|b′|2
|a′|2 + |b′|2 . (3.22)

giving the probability of finding a state in a given conformal block.

3.2 S2 with three quasiparticles

There are many other cases that we could consider; generically, they cannot be represented

by ordinary Wilson lines. The simplest such case is the three-punctured sphere; in terms of

Wilson lines attached to the punctures, this would look like a ‘string junction’. However,

the density matrix ρA can be thought of in terms of Wilson lines. And of course given

what we have learned in the previous section, we know that the entanglement entropy can

be computed directly in the conformal block basis.

For example, let’s put α̂, α̂∗ and θ̂ on S2 as in figure 19. Here the density matrix has

the same conformal block as one of the states we found in the last section. Thus, up to

a normalization factor, ρθ̂A = −ρ1 + dα̂ρ2. Following the same construction as in the last

section, we will get

Zn

S0
0 = (−dα̂ + dα̂)

n + (dα̂)ndθ̂,
Zn
Zn1

=
(
S0

θ̂
)1−n

, SA(α̂,α̂∗);θ̂ = lnS0
θ̂. (3.23)

Clearly, there is a single conformal block contributing here.

Similarly for α̂, α̂∗, 0̂ insertions, we find

SA(α̂,α̂∗);0̂ = lnS0
0. (3.24)
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Given these examples and further thought about the general case, we can generalize

the three quasiparticle sphere to

SA(i,j);k = lnS0
0 + ln dk. (3.25)

3.3 Does the topological entropy depend on the entire S-matrix?

In the previous discussion we have found that the entanglement entropy depends on the

quantum dimensions which are determined by the top row of the S-matrix. It is natural

to ask if in other computations the other matrix elements of S will also enter. We will

argue here that the answer is essentially negative. As an example, let us consider a case

in which one might have expected that the other matrix elements matter, the case of a

torus in a non-trivial state i (e.g. a state created by a Wilson loop in representation R̂i)

with a puncture in representation R̂j . One might anticipate that the entanglement entropy

of the region represented in figure 11 would depend on Sij . In fact it does not. The

reason is that when computing trρnA, any possible explicit dependence on Sij cancels out

when properly normalizing ρA. As a consequence the result depends on the S-matrix only

implicitly through the fusion numbers Nij
k. Given the structure of this result, it appears

that this is a general property.

Another issue is the state dependence; in particular, we may have a situation in which

the Hilbert spaces have dimensions greater than one, and hence there is at least implicit

dependence on Nij
k.5 A simple case of interest is four punctures on a sphere; suppose

i, j are in A while k, ℓ are in B and that both i × j and k × ℓ contain a block m. If

Nij
m and Nkℓ

m are larger than one,6 then ρA is a matrix of rank min(Nij
m, Nkℓ

m). Each

eigenvalue pα of ρA contributes a factor −pα ln(pα/dm) to the entanglement entropy (in

the case of a single component interface). This would be summed over the possible fusion

channels m. In the case where there are multiple interface components, we can organize the

calculation into fusions A → {mj} and B → {mj}, where j = 1, . . . , I label the interface

components. In this case, the rank of ρA is min(N
{mj}
A , N

{mj}
B ), with N

{mj}
A the fusion

number of punctures in the A region into the collection of blocks {mj}. Each eigenvalue

pα of ρA then contributes a factor −pα ln(pα/
∏
j dmj ), which should be summed over α

and the fusion channels. In this sense, the entanglement entropy depends on the fusion

rules, but in an implicit way. This may be generalized to higher genus. In such a case, we

also keep track of the representation along each handle, and these can make a contribution

to the fusion numbers N ; apart from taking this into account, the entanglement entropy

is computed as we have described here. All of the examples considered explicitly in this

paper (all of which had rank(ρA) = 1) may also be expressed in this language.

4. Chern-Simons theory of the topological entanglement entropy of frac-

tional quantum Hall states

The FQH states are topological fluids whose low energy effective field theory is a Chern-

Simons gauge theory. As we saw in the preceding sections the entanglement properties

5For ŜU(2)k, the Nij
k’s are either zero or one, and so this issue doesn’t arise.

6The explicit examples considered above in section 3.1 have Nij
m ≤ 1.
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of SU(N)k Chern-Simons gauge theories depend on the modular S-matrix, which yield

the quantum dimensions, and on the fusion rules of the excitations. We also saw that

the entanglement entropy depends on the topology of the surface and on the regions that

are being observed, and that when the states are degenerate the entanglement properties

naturally also depends on which state is considered.

In this section we apply the general results we derived in the preceding sections for

Chern-Simons gauge theories to the computation of the entanglement entropies for both

Abelian and non-Abelian fractional quantum Hall states. The results we will derive here

apply only in the strict topological limit, that is for systems in the thermodynamic limit

and for observed regions of size L much larger than any intrinsic length scale of the physical

system. In doing so we can only obtain the universal topological entropies. It will suffice

to identify which Chern-Simons describes each case of interest and to use the results of the

preceding section to compute the entropies.

The entanglement entropy for the (Abelian) Laughlin FQH wave functions [41], as well

as for the non-Abelian FQH Pfaffian wave functions [42, 43], was calculated numerically

recently in several papers [44, 45] which attempted to extract the topological entropy γ for

these states. This is in practice difficult to do numerically due to the large non-topological

area term which needs to be subtracted. Similarly, the computation of the topological

entropy in the conceptually much simpler Z2 topological phase of the quantum dimer

model on a triangular lattice, which has a small but finite correlation length, presents

similar difficulties [46]. The deconfined phases of 2 + 1-dimensional discrete gauge theories

are actually the simplest models of topological phases [47 – 49]. For Kitaev’s toric code

state [23], i.e. the ultra-deconfined limit of a Z2 gauge theory, a state with a vanishing

correlation length, it is simple to compute the entropy [50, 14]. The (non-topological)

effects of a finite correlation length in a topological phase have been discussed in detail

recently [51]. The scaling behavior of the entanglement entropy across a Z2 confinement-

deconfinement phase transition was recently studied numerically [52], as well as the role of

thermal fluctuations on the behavior of the entropy in the Z2 topological state [53].

To proceed we will need to identify the Chern-Simons theory appropriate for the FQH

state of interest. There is a well developed body of theory which does that and it is reviewed

in appendix A. The identifications that we need are the following:

1. For the Abelian (Laughlin) FQH states, at filling factor ν = 1/m (with m an odd

integer) the effective field theory is an Abelian Chern-Simons gauge theory U(1)m
(see ref. [42, 54]). It is straightforward to extend these results to the case of general

Abelian FQH states.

2. The bosonic non-Abelian FQH states are described by a Chern-Simons gauge theory

for SU(2)k, whereas the fermionic non-Abelian FQH states are described by Chern-

Simons gauge theories whose CFTs are cosets of the form [ ̂SU(2)/U(1)]2 × Û(1) (see

refs. [42, 27, 43, 55 – 57] and appendix A).7

7This tensor product notation is ambiguous. The full RCFT has an extended chiral algebra. Its primaries

are those in the tensor product which are local with respect to the current J+ (defined below) with conformal

dimension 1 + M/2. [58, 43] In section 4.3 we describe these structures in detail.
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3. The Chern-Simons theory describing generalizations of the px + ipy superconductors

(see ref. [18, 19, 37]) have a coset CFT ̂(SU(2)/U(1))k.

4. The results presented here can be generalized to other non-Abelian FQH states of

interest, e.g. the unpolarized non-Abelian states of ref. [59] (and references therein)

which involve more complicated systems such as SU(3)2 and others. We will not

discuss these cases here.

4.1 U(1)m Chern-Simons: the ν = 1
m FQH Laughlin states

We will begin with a discussion of the ν = 1/m FQH Laughlin states which correspond

to a U(1) Chern-Simons theory at level m. For the fermionic states m is an odd integer,

whereas for the bosonic states m is an even integer. This case, and its connection with the

modular S-matrix and quantum dimensions, was discussed in great detail in ref. [37]. For

completeness, here we present only a summary of the relevant results. The description of

the edge states of the Laughlin states in terms of a compactified CFT is due to Wen. [60, 61].

The Û(1) theory consists of a compact free chiral boson of compactification radius R.

We will normalize8 the field such that its correlator is 〈φ(z)φ(0)〉 ∼ − ln z. There is a U(1)

current J0 ∼ i∂φ and operators OQ ∼ exp(iQφ/R) of conformal dimension hQ = Q2/2R2.

If Q ∈ Z, then OQ is single-valued. The characters of this model are

χn,w(τ) =
q(n/R+wR/2)2/2

η(q)
, (4.1)

where q = e2πiτ . In a rational CFT, we have that the radius is given by R =
√

2p′/p where

p, p′ are co-prime integers, in which case we can rewrite these characters as

χr,ℓ(τ) =
qpp

′(r+ℓ/2pp′)2

η(q)
. (4.2)

In this expression, r ∈ Z and −pp′ < ℓ ≤ pp′. These can be organized into characters of an

extended algebra generated by J0 and operators J±, a set which closes under the action of

the modular group. Generally, we find

χℓ(τ) =
∑

s∈Z

qpp
′(s+ℓ/2pp′)2

η(τ)
, (4.3)

where ℓ ∈ −pp′ + 1, . . . , pp′. [62] The modular S-matrix for these characters is

Sℓℓ
′

=
1√
2pp′

eiπℓℓ
′/pp′ , (4.4)

as can be easily established through Poisson resummation. We will use these formulae in

later sections.

8In string theory conventions, this corresponds to units α′ = 2.
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In the case where pp′ is even, this can be refined (that is, it is consistent (with respect

to modular transformations) to consider a subsector of the Hilbert space) to

χ[n](τ) ∼ χℓ=2n + χℓ=2n+pp′ =
∑

s∈Z

qm(s+n/m)2/2

η(q)
, (4.5)

where we have identified (when pp′ is even) m = pp′/2 and n is in the range 0, 1, . . . ,m−1.

This is the case that obtains for the Abelian Laughlin states,9 and we will refer to this

theory as Û(1)m. The set of primaries are in one-to-one correspondence with the states

of a bulk Chern-Simons theory at level m. The extended current algebra is generated by

J and J± ∼ exp(±i√m φ), the latter having dimension h± = m/2. J+ is the operator

that shifts n by m, leaving the character invariant and in the physical application, is

interpreted as the electron. Requiring that primaries have local operator products with J±,

we find O2n/p = exp(inφ/
√
m), of dimensions n2/(2m); these correspond to the fractionally

charged quasiparticles.

Under a modular transformation, it is easy to establish (using Poisson resummation)

that

χ[n′](−1/τ) =
∑

ℓ

1√
m
e2πinn

′/mχ[n](τ). (4.6)

Thus, we read off the modular S-matrix10

S[n′]
[n] =

1√
m
e2πinn

′/m, (4.7)

and thus the total quantum dimensions

D =
(
S0

0
)−1

=

√∑

ℓ

|dℓ|2 =
√
m. (4.8)

For the fermionic Laughlin states, m is an odd integer so that J± is a fermionic operator,

which usually identified with the electron. In the special case m = 3 the electron has di-

mension 3/2 and the theory is equivalent to a superconformal field theory. For the bosonic

Laughlin states m is even, and J± is a bosonic operator. In the special case m = 2, the

theory is equivalent to ŜU(2)1.

4.2 Coset [ ̂SU(2)/U(1)]k theories

Chern-Simons theory whose CFT is the coset [ ̂SU(2)/U(1)]2 describes the two-dimensional

time reversal breaking superconductors with symmetry px + ipy. In some sense this is the

simplest system with non-Abelian statistics. Here we will consider the general case of the

coset [ ̂SU(2)/U(1)]k.

9Specifically, we can take p = 2m, p′ = 1, which gives radius R = 1/
√

m. These values are of course

ambiguous up to T-duality, which acts as p ↔ p′, R → 2/R.
10The S-matrix of eq. (4.16) is complex, symmetric and unitary. It differs from the result of ref. [37] that

found a real symmetric matrix. Nevertheless the quantum dimensions agree.
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To construct this coset, we begin with the ŜU(2)k characters, which are labeled by

ℓ = 2j = 0, 1, . . . , k, and decompose them with respect to [ ̂SU(2)/U(1)]k × Û(1)k

χ
SU(2)
ℓ (τ) =

k∑

r=−k+1

χcoset
ℓ,r (τ)χU(1)

r (τ), (4.9)

where χU(1)
r (τ) is given by eq. (4.3), with k = pp′. Since we know the modular transforma-

tions of both the SU(2) (eq. (2.10)) and U(1) characters (eq. (4.4)), we read off

χcoset
ℓ,r (−1/τ) = S(ℓ,r)

(ℓ′,r′)χcoset
ℓ′,r′ (τ), (4.10)

with

S(ℓ,r)
(ℓ′,r′) =

(
SSU(2)

)
ℓ

ℓ′(
S†U(1)

)
r

r′

=

√
1

k(k + 2)
sin

[
π(ℓ+ 1)(ℓ′ + 1)

k + 2

]
e−iπrr

′/k. (4.11)

This should be restricted to r + ℓ ≡ 0 (mod 2) (since there is such a correlation between

U(1) charges and SU(2) representations). Note though that in this formula, equivalent

characters appear twice, as χcoset
ℓ;r = χcoset

k−ℓ;r±k. Accounting for these caveats, we find the

independent characters, which lead to the final form of the S-matrix:

S(ℓ,r)
(ℓ′,r′) =

√
4

k(k + 2)
sin

[
π(ℓ+ 1)(ℓ′ + 1)

k + 2

]
e−iπrr

′/k. (4.12)

For the case of most physical interest, we have k = 2, and the coset primaries may be taken

to be (0; 0), (1; 1) and (0; 2). This is in fact just the chiral Ising model with (0; 0) ∼ I,

(1; 1) ∼ σ and (0; 2) ∼ ψ. The S-matrix for
(

̂SU(2)/U(1)
)

2
is

Scoset
k=2 =

1

2




1
√

2 1√
2 0 −

√
2

1 −
√

2 1


 , (4.13)

which agrees with the results of ref. [37].

4.3 Moore-Read and Read-Rezayi FQH states: Pfaffian and generalized

parafermion states

We now turn to the Moore-Read and Read-Rezayi non-Abelian FQH states, and their

generalization. The filling factor of these states is ν = k/(Mk+2); M even corresponds to

bosonic states and M odd to fermionic states [43]. As discussed above (and in appendix

A), these states are described by ̂[SU(2)/U(1)]k× Û(1) CFTs, with a suitably defined level

for the U(1). Examples of these states are the well known Moore-Read Pfaffian states. The

the fermionic state with k = 2 and M = 1 has filling factor 1/2 (5/2 in the experiment),

and the related bosonic state at filling factor ν = 1 has k = 2 and M = 0. The states with

k > 2 are the Read-Rezayi parafermionic states.
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We will discuss both the general fermionic and bosonic states with fixed k and M .

The RCFT of interest is in all cases embedded in ̂(SU(2)/U(1))k × Û(1)k(Mk+2). We will

consider the cases of k even and k odd as their structure is somewhat different. Here we

only present details for the simpler cases. The details of the derivations for the general

case are given in appendix C.

By reasoning similar to the above, the resulting S-matrix can be obtained by multiply-

ing coset and U(1) characters. For the Pfaffian state k = 2, the coset is a Z2 parafermion.

The resulting S-matrix will, up to identifications, be given by

S(ℓ,r;s)
(ℓ′,r′;s′) = (Scoset

2 )(ℓ,r)
(ℓ′,r′)(SU(1)4M+4)s

s′

. (4.14)

Primaries of this theory will be given by products of the Z2 primaries {I, σ, ψ} with

U(1)4M+4 primaries of the form Oℓ/p. We seek a set of such operators that close un-

der operator products and are local with respect to a suitable extended current algebra,

which will be generated by J± ∼ ψ e±i
√
M+1φ, where ψ is the Majorana fermion of Z2. For

simplicity, we will consider two cases here, M = 0 (take p = 2, p′ = 1, radius R = 1) and

M = 1 (take p = 4, p′ = 1, radius R =
√

1/2).

In the case of k = 2 and M = 0, we find the integer-weight J± ∼ ψ e±iφ as suitable

extended currents. Requiring locality of operator products, we then find that the primaries

of this theory are given by I, ψ, σeiφ/2 (all others are related to these by action of J±). These

in fact are just the primaries of ŜU(2)2, as we should expect. This is the bosonic Pfaffian

state. The associated modular S-matrix was given in section II and appendix C.

In the case of k = 2 and M = 1 (the fermionic Pfaffian state), we find J± ∼ ψ e±i
√

2φ

as suitable extended currents. Requiring locality of operator products, we then find that

the primaries of this theory are given by

I, ψ, σe±iφ/2
√

2, e±iφ/
√

2. (4.15)

This set closes under fusion (up to the action of J±). These operators have weights11

(0, 0; 0), (0, 2; 0), (1, 1;±1) and (0, 0;±2) respectively. We can then read off the S-matrix:

S =
1

2
√

2




1 1
√

2
√

2 1 1

1 1 −
√

2 −
√

2 1 1√
2 −

√
2 0 0 +i

√
2 −i

√
2√

2 −
√

2 0 0 −i
√

2 +i
√

2

1 1 i
√

2 −i
√

2 −1 −1

1 1 −i
√

2 +i
√

2 −1 −1



, (4.16)

from which one can read-off the total quantum dimension is D = 2
√

2. This model can also

be viewed as (the NS sector of) an N = 2 superconformal current algebra, as the current

J+, having conformal weight 3/2, can be viewe d as a supercharge. So the operators listed

in eq. (4.15) are then viewed as superconformal primaries. [43, 58]

We will now consider the interesting example of the parafermionic states at k = 3 and

M = 1: the Read-Rezayi parafermionic state for fermions at filling factor 2 + 2/5. The

11The notation (ℓ, r; s) represent the coset weights (ℓ, r) and the U(1)-charge s.
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k = 3 coset has primaries at (ℓ, r) = (0, 0), (1,±1), (2, 0), (3,±1), which we will refer to

as I, σ±, ǫ, ψ± respectively. Explicitly, denoting sp ≡ sin(πp/5), we have

Scoset
k=3 =

2√
15




s1 s2 s2 s2 s1 s1
s2 e−iπ/3s1 e+iπ/3s1 −s1 −e−iπ/3s2 −e+iπ/3s2
s2 e+iπ/3s1 e−iπ/3s1 −s1 −e+iπ/3s2 −e−iπ/3s2
s2 −s1 −s1 −s1 s2 s2
s1 −e−iπ/3s2 −e+iπ/3s2 s2 −e−iπ/3s1 −e+iπ/3s1
s1 −e+iπ/3s2 −e−iπ/3s2 s2 −e+iπ/3s1 −e−iπ/3s1



. (4.17)

For this case there is an extended algebra generated by the h = 3/2 operator Q+ =

ψ+ e5iφ/
√

15, where φ is a free boson of the U(1) theory that we are attaching [58]. Rep-

resentative primaries are (ℓ, r; s) = (0, 0; 0), (3,−1; 1), (3, 1; 2), (0, 0; 3), (3,−1; 4) and

(ℓ, r; s) = (2, 0; 0), (1,−1; 1), (1, 1; 2), (2, 0; 3), (1,−1; 4). One can check that these have

local OPE’s with Q+ and are closed under fusion. As we will see, it is convenient to

group them into groups of k + 2 = 5, as given. The theory obtained this way is actu-

ally an N = 2 superconformal theory, with supercharges Q± (Q− being ψ− e−5iφ/
√

15).

Q+ groups collections of conformal primaries together, i.e., {(0, 0; 0), (3, 1; 5), (3,−1; 10)},
{(3,−1; 1), (0, 0; 6), (3, 1; 11)}, {(3, 1; 2), (3,−1; 7), (0, 0; 12)}, {(0, 0; 3), (3, 1; 8), (3,−1; 13)},
and {(3,−1; 4), (0, 0; 9), (3, 1; 14)} and {(2, 0; 0), (1, 1; 5), (1,−1; 10)},
{(1,−1; 1), (2, 0; 6), (1, 1; 11)}, {(1, 1; 2), (1,−1; 7), (2, 0; 12)}, {(2, 0; 3), (1, 1; 8), (1,−1; 13)},
and {(1,−1; 4), (0, 0; 9), (1, 1; 14)}. Each of these triplets represents a superconformal fam-

ily. When we compute the S-matrix with respect to the extended symmetry, we treat these

groupings as one. That is, computing the S-matrix element on the grouping gives a 3 × 3

identity matrix times a factor. We collect those factors into the following S-matrix.

SFRRk=3 =
2

5

(
sin(π/5) sin(2π/5)

sin(2π/5) − sin(π/5)

)
⊗




1 1 1 1 1

1 ω2 ω4 ω1 ω3

1 ω4 ω3 ω2 ω1

1 ω1 ω2 ω3 ω4

1 ω3 ω1 ω4 ω2



. (4.18)

where we have used the U(1) S-matrix is Sss
′

= 1√
15
e2πiss

′/15. Above we used the notation

is ωp = e2πip/5. The coefficient out front is 2√
15

· 1√
15

· 15
5 , the factors being the coefficients

of the coset S-matrix, the U(1) S-matrix and the order of the automorphism (5 in 15),

respectively. Note that it is easy to read off then the total quantum dimension

D =
1

S0
0 =

5

2 sin(π/5)
= D =

√
5 + 5(s2/s1)2 =

√
5(1 + φ2), (4.19)

where here φ = (
√

5 + 1)/2 denotes the Golden Ratio (not the chiral boson!).

In appendix C it is shown that for general k and M , the primaries are the highest

weight states of the form

ψ(ℓ,ℓ−2[ n
M

])exp

(
i
ℓ+nk−(Mk+2)[ nM ]√

k(Mk + 2)
φ

)
or ψ(ℓ,ℓ−2[ n−1

M
])exp

(
i
ℓ+nk−(Mk+2)[n−1

M ]√
k(Mk + 2)

φ

)
,

(4.20)
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where ψ(ℓ,r) are Zk-parafermion primaries, n and ℓ are integers (with a suitable range, see

appendix C), [x] is the closest integer to x. For general k the S-matrix is given by

S{ℓ;n}
{ℓ′;n′}=

2√
(k+2)(Mk+2)

sin

[
π(ℓ+1)(ℓ′+1)

k + 2

]
exp

(
πi(−Mℓℓ′+2ℓn′+2ℓ′n+2knn′)

Mk + 2

)
.

(4.21)

One can read off from this the total quantum dimension D for all M and k, since

1

D = S0
0 =

2√
(k + 2)(Mk + 2)

sin

(
π

k + 2

)
. (4.22)

In appendix C we also show that for general (odd) k, the modular S-matrix may be

put into the simpler form

S{l;n}
{l′;n′} =

2√
(k + 2)(Mk + 2)

sin

[
π(ℓ+ 1)(ℓ′ + 1)

k + 2

]
(−1)ℓℓ

′

exp

(
2πiknn′

Mk + 2

)
, (4.23)

with ℓ = 0, . . . , k+1
2 and n = 0, . . . ,Mk + 1. The result of the k = 3, M = 1 example

considered above matches with this.

5. Conclusions

In this paper we computed the entanglement entropy for Chern-Simons gauge theory with

general gauge group. We considered the specific cases of SU(N)k and various cosets (of

interest in the theory of FQH states). We have done this by direct computation in the

2+1-dimensional gauge theory using surgery techniques. We found that the entanglement

entropy for these theories can be written as a Chern-Simons path integral in a complicated

3-manifold whose details depend upon the topology of the spatial surface and the way it

is partitioned to compute the entanglement. In all cases the entanglement entropy can

be expressed in terms of modular features of the dual two-dimensional conformal field

theory. We found that in general the entanglement entropy depends on the universal data

of this topological field theory (that is the quantum dimensions, the fusion rules and the

corresponding fusion numbers). However in cases in which, due to topology the ground

state is degenerate, the entanglement entropy may also depend on the choice of state.
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A. Chern-Simons gauge theory and fractional quantum Hall states

In this appendix we review the connection between FQH states and Chern-Simons theory.

The FQH states are incompressible electron fluids which, due to the presence of the large

magnetic field, have an explicitly broken time reversal invariance. These topological fluids

have a ground state degeneracy which depends only on the topology of the surface on which

the fluids reside. [63] In their low energy and long distance (hydrodynamic) regime, the FQH

fluids behave as topological fluids. The excitations of these fluid states (“quasiparticles”)

are vortices which, in general carry fractional charge and fractional (braid) statistics. [64]

In other words, the long-distance correlations in this topological fluid are encoded in the

fractional charge of its vortices and, more significantly, in the non-local effects of frac-

tional statistics. However, since these topological fluids are condensates of electrons, these

quasiparticle (vortex) states are local with respect to states representing an electron. This

condition, and the quantization of the electron charge e play a key role in the properties of

the effective theories of these fluids [42]. This structure is also responsible for the extended

symmetries in the corresponding CFTs that we described in the body of the paper.

In the hydrodynamic regime i.e., at energies low compared to the quasiparticle exci-

tation energies and on length scales long compared with the magnetic length, the physical

properties of these FQH fluids have been shown [27, 54 – 56, 65 – 69] to be described by

an effective (topological) quantum field theory, the Chern-Simons gauge theory in 2 + 1

dimensions. [9, 70]

A.1 The Abelian quantum Hall states

We will consider first the Laughlin states, whose wave functions for a system of N particles

at filling factor ν = 1/m are [41]

Ψm(z1, . . . , zN ) =
∏

i<j

(zi − zj)
m e

−
N∑

i=1

|zi|2/4ℓ2
(A.1)

where {zi} are the complex coordinates of N particles, and ℓ is the magnetic length.

Following ref. [54], we write the effective field theory of the Laughlin FQH states, which

have filling fraction ν = 1/m (with m and odd integer for fermions and an even integer for

bosons), as U(1)m Chern-Simons theory, whose Lagrangian density is

L =
m

4π
ǫµνλAµ∂νAλ (A.2)

up to irrelevant operators whose effects are negligible in this extreme infrared regime. The

field strength of the gauge field Aµ is essentially the hydrodynamic charge current of the

topological fluid Jµ
Jµ = − e

2π
ǫµνλ∂νAλ (A.3)

where e is the electric charge. The (infinitely) massive quasiparticle bulk excitations, the

vortices of the topological fluid, are represented in this limit by temporal Wilson loops (the
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world lines of these quasiparticles). On a manifold of genus g, the ground states of the

FQH fluids are degenerate [63]. In the Chern-Simons description, the degeneracy is mg,

where m is the (quantized) level of the Chern-Simons theory.

This hydrodynamic description generalizes to describe all other Abelian FQH

states [71, 72]. The corresponding effective field theory is a Chern-Simons gauge theory of

a tensor product of U(1) gauge groups at various levels, as well as non-Abelian groups at

level 1 (which only have Abelian representations of the braid group) [69, 73]. Here we will

consider only the simpler Laughlin states as the generalizations of our results to the other

Abelian fluids is straightforward.

A direct consequence of the topological nature of the FQH fluids is that, for a physical

system with a boundary, their excitations are gapless. These edge states are described by

a chiral conformal field theory (CFT). [61, 60, 74] In particular, there exists a one-to-one

correspondence between the gapped bulk quasiparticles and the primary fields of the edge

chiral CFT. At the edge, the effective CFT for a Laughlin state is a U(1)m chiral boson

φ in 1 + 1 dimensions.

The physical requirement that the quasiparticle edge states are local with respect to

the electron operator leads to the compactification of this CFT, which now becomes a chiral

rational conformal field theory (RCFT). [42, 54] Thus, the only operators allowed in the

edge chiral RCFT must obey the condition of being invariant under the compactification

condition φ → φ + 2πR, where R is the compactification radius (see section 4). The

compactification condition leads to a truncation of the spectrum which has m distinct

sectors, the same as the ground state degeneracy on the torus. Since in the Abelian states

all the states are one-dimensional representations of the braid group, it follows that all the

quantum dimensions of these states are equal to unity, di = 1, where here i = 1, . . . ,m.

A.2 The non-Abelian quantum Hall states

The non-Abelian FQH states are more interesting and have a more intricate structure.

Although no simple unified effective field theory of all the non-Abelian states yet exists,

in all the cases that have so far been studied the effective field theory contains at least a

U(1)m gauge group at some level m (for the charge sector), and a non-Abelian gauge group

such as SU(2)k at some level k. For instance, for the Moore-Read Pfaffian FQH states [42]

Ψq(z1, . . . , zN ) = Pf

(
1

zi − zj

) ∏

i<j

(zi − zj)
m e

−
N∑

i=1

|zi|2/4ℓ2
(A.4)

where Pf
(

1
zi−zj

)
is the Pfaffian of the matrix. It has long been known [42] that this wave

function can be regarded as a correlator in an Euclidean two-dimensional CFT. Indeed,

the Laughlin factor is simply the expectation value of a product of vertex operators of a

chiral Euclidean boson V√m = ei
√
mφ (in a neutralizing background) and a correlator of

majorana fermions ψ in an Ising chiral Euclidean CFT. The theory of the edge states of

the Moore-Read states is a chiral CFT described in section 4.
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It turns out that for the bosonic state at m = 1 (with filling factor ν = 1, which may

hopefully be accessible to experiments in ultra-cold gases of bosons in rotating traps [20]),

the effective field theory in the bulk is simply an ŜU(2)2 Chern-Simons gauge theory [27,

55, 56], without any U(1) factors. The excitation spectrum of this state consists of a

particle with non-Abelian braid statistics, the Moore-Read “non-abelion”, created by the

Ising primary field σ, whose quantum dimension is dσ =
√

2 (since the degeneracy of a

state with 2n such vortices is 2n−1 [75]), a Majorana fermion ψ (with quantum dimension

dψ = 1), and the identity field I (the boson also with quantum dimension d0 = 1).

The two-dimensional time-reversal breaking superconducting state with symmetry

px + ipy, apparently observed in Sr2RuO4, is also closely related to paired-Hall Pfaffian

states [76]. It is also a non-Abelian state and it is also, up to an U(1) factor, an ŜU(2)2 state.

Indeed, Fendley, Fisher and Nayak [37] have computed the effective quantum dimension

for this case as well and found that it is also equal to
√

4.

The fermionic Pfaffian state at m = 2 is the natural state to explain the observed

plateau in the quantum Hall conductance at filling factor ν = 5/2 = 2 + 1/2. As can

be seen from the structure of the Moore-Read states, c.f. eq. (A.4), the bosonic state at

m = 1 and the fermionic state at m = 2 differ only by the Laughlin factor. Hence, one

expects the fermionic state also to be connected to SU(2)2 which, up to some caveats [27],

is essentially correct. The SU(2) symmetry of the bosonic case is dynamical and it is broken

in the fermionic case due to the change in the compactification radius of the boson (see

refs. [27, 55, 56, 77]). Thus, one expects the the quantum dimensions of SU(2)2 should play

a role here too. However, the presence of the additional U(1) factors, associated with the

charge sector, and the breaking of the SU(2) symmetry changes the dimensions. Recently,

Fendley, Fisher and Nayak [37] have analyzed this case in detail. The upshot of their

analysis is that the fermionic Pfaffian state has a total of six primary fields: the identity

I, two (conjugate) non-abelion primaries σe±iφ/(2
√

2), the Majorana fermion ψ, and the

Laughlin quasiparticle and quasihole e±iφ/
√

2. The quantum dimensions of these states

are, respectively, dI = 1, dσ =
√

2, dψ = 1, and 1 for the Laughlin vortices.

More interesting from the point of view of topological quantum computing, but not yet

clearly seen in quantum Hall experiments, are the Read-Rezayi parafermionic states. [43]

The Read-rezayi states are constructed in a manner analogous to that of the Moore-Read

states. The main and important difference is that the Pfaffian factor, which as we saw

is equivalent to a correlator of Majorana fermions in a chiral Ising CFT, is replaced by a

parafermion correlator of a parafermionic chiral CFT. In particular, the simplest bosonic

parafermionic state can be represented in terms of the Chern-Simons theory SU(2)3 [55].

The fermionic counterpart can also be understood in similar ways. The interest in this

state stems from its non-Abelian vortex. As a consequence of their fusion rules, the topo-

logical degeneracies of these vortex states follow the Fibonacci sequence, and the quantum

dimension of this non-Abelian vortex is the Golden Mean [25].
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B. Calculation of the SU(N)k modular S-matrix and framing factor

B.1 The S-matrix elements

We use (14.247) in [62]

Sδ̂
λ̂

Sδ̂0
= γ

(δ̂)

λ̂
= χλ

[−2πi(δ + ρ)

k + g

]
(B.1)

to compute the S-matrix elements. The notations used in this appendix are also adopted

from [62] and differ somewhat from the notations we used in the body of the paper.

For ŜU(N)k, there is a natural orthonormal basis for the root lattice to compute the

characters. It is constructed as follows. Pick N dimensional unit lattice with unit vectors

{ǫi}, i = 1, . . . , N , then the simple roots of SU(N) can be written as

αi = ǫi − ǫi+1, i = 1, . . . , N − 1, (B.2)

i.e. the root space sits in the N −1 dimensional subspace with
∑N

i=1 ni = 0 for any element∑N
i=1 niǫi. Any integral representation λ =

∑N−1
i=1 λiωi, if expressed in the orthonormal

basis, becomes

λ =
N∑

i=1

(li − κ)ǫi, (B.3)

where li =
∑N−1

j=i λj is the partition of the associate Young tableau, and κ = 1
N

∑N−1
j=1 jλj .

In particular, the Weyl vector becomes

ρ =

N−1∑

i=1

ωi =

N∑

i=1

(
N − i− N − 1

2

)
ǫi. (B.4)

Since

χλ

[−2πi(δ + ρ)

k + g

]
=
Dλ+ρ

(
−2πi(δ+ρ)

k+g

)

Dρ

(
−2πi(δ+ρ)

k+g

) =

∑
w∈W ǫ(w)e

“

w(λ+ρ),(−2πi(δ+ρ)
k+g

)
”

∑
w∈W ǫ(w)e

“

wρ,(−2πi(δ+ρ)
k+g

)
” , (B.5)

where Weyl group W is simply the symmetric group of {ǫi}, if we define q = e
−2πi
k+g , we

will have

Sδ̂ λ̂

Sδ̂0
=

∑
s∈SN

ǫ(s)
∏N
i=1 q

(lλsi
+N−si−κλ−κρ)(lδi+N−i−κδ−κρ)

∑
s∈SN

ǫ(s)
∏N
i=1 q

(N−si−κρ)(lδi+N−i−κδ−κρ)

=
det
[
q(lλi+N−i−κλ−κρ)(lδj+N−j−κδ−κρ)

]

det
[
q(N−i−κρ)(lδj+N−j−κδ−κρ)

]

= q−κλ
PN

j=1(lδj+N−j−κδ−κρ)
det
[
q(lλi+N−i)(lδj+N−j−κδ−κρ)

]

det
[
q(N−i)(lδj+N−j−κδ−κρ)

]

=
det
[
q(lλi+N−i)(lδj+N−j−κδ−κρ)

]

det
[
q(N−i)(lδj+N−j−κδ−κρ)

]
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= q(−κδ−κρ)
PN

i=1 lλi

det
[
q(lλi+N−i)(lδj+N−j)

]

det
[
q(N−i)(lδj+N−j)

]

= q−N(κδ+κρ)κλSλ
({
qlδj+N−j

})
,

where in the last step we have used the Schur function

Sλ({xj}) ≡
det
[
x
lλi+N−i
j

]

det
[
xN−i
j

] . (B.6)

To calculate the Schur function specialized at {qlδj+N−j}, we can use one of the Giambelli’s

Formula (see appendix A.1 around (A.5) of [78] for detailed discussion),

Sλ({xj}) = det[EλT
i+j−i], (B.7)

where λT is the transposed partition of λ, and Ek are the elementary symmetric

polynomials generated by

E(t) =

N∏

i=1

(1 + xit) =

∞∑

m=0

Emt
m, (B.8)

and Ej = 0 for j < 0.

Now, in our case

E(t) =

N∏

i=1

(
1 + qlδj+N−jt

)
, (B.9)

and in principle by expanding E(t) we can read off all the Em and calculate

Sλ
({
qlδj+N−j}). From (14.217) of [62] we can see that Sδ̂0 = S0

δ̂, thus

Sδ̂
λ̂ = S0

0Sδ̂ λ̂

Sδ̂
0

S0
δ̂

S0
0 . (B.10)

To calculate S0
0, we need to use (14.217) of [62]. For SU(N)k, |∆+| = N(N−1)

2 ,

|P/Q̌ | = N , g = N , r = N − 1, thus

S0
0 = i

N(N−1)
2

√
1

N(k +N)N−1
det
[
q(N−i−κρ)(N−j−κρ)

]

= i
N(N−1)

2

√
1

N(k +N)N−1
q−N(κρ)2det

[
q(N−i)(N−j)

]

= i
N(N−1)

2

√
1

N(k +N)N−1
q−N(N−1

2
)2

∏

1≤i<j≤N

(
qN−i − qN−j)

=

√
1

N(k +N)N−1

∏

1≤i<j≤N

(
2 sin

π(j − i)

k +N

)
.
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The quantum dimensions are as follows,

dλ̂ =
S0

λ̂

S0
0 = q−NκρκλSλ

({
qN−j}) . (B.11)

First we calculate the generating function,

E(t) =
N∏

i=1

(
1 + qN−it

)
= 1 +

N∑

m=1

tm
m∏

r=1

qN − qr−1

qr − 1
, (B.12)

and then plug into

Sλ
({
qN−j}) = det[EλT

i+j−i]. (B.13)

For example, for the fundamental representation α of SU(N), the transpose αT =

{1, 0, 0, . . . , 0}, and

Sα({qN−j}) = det




E1 E2 · · · · · · EN
0 E0 E1 · · ·
0 0 E0 · · ·
. . . . . . . . . . . . . . . . . .

· · · · · · 0 E0




= E1 =
qN − 1

q − 1
. (B.14)

Thus

dα̂ = q−N
N−1

2
1
N
qN − 1

q − 1
=
qN/2 − q−N/2

q1/2 − q−1/2
= [N ]. (B.15)

Here we have used the q-number notation, defined as [x] = qx/2−q−x/2

q1/2−q−1/2 . Using this, we can

write Em as

Em =

m∏

r=1

qN − qr−1

qr − 1
=

m∏

r=1

q
N−1

2
[N + 1 − r]

[r]
= q

(N−1)m
2

m∏

r=1

[N + 1 − r]

[r]
. (B.16)

We also want to check dα̂∗, for which α∗T = {N − 1, 0, 0, . . . , 0, 0}, and

Sα∗
({
qN−j}) = det




EN−1 EN 0 · · · 0

0 E0 E1 · · ·
0 0 E0 · · ·

. . . . . . . . . . . . . . . . . . . . .

· · · · · · 0 E0




= EN−1 = q
(N−1)2

2 [N ]. (B.17)

Thus

dα̂∗ = q−N
N−1

2
N−1

N
+

(N−1)2

2 [N ] = [N ] = dα̂. (B.18)
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For symmetric and antisymmetric rank two representations σ̂ and ω̂ we have σT =

{1, 1, 0, . . . , 0, 0} and ωT = {2, 0, 0, . . . , 0, 0}, thus

Sσ
({
qN−j}) = det




E1 E2 · · · · · · EN
E0 E1 E2 · · ·
0 0 E0 · · ·
. . . . . . . . . . . . . . . . . .

· · · · · · 0 E0




= E2
1 − E2 (B.19)

= qN−1

(
[N ]2 − [N ][N − 1]

[2]

)
= qN−1 [N ][N + 1]

[2]
,

and

Sω
({
qN−j}) = det




E2 E3 · · · · · · EN
0 E0 E1 · · ·
0 0 E0 · · ·
. . . . . . . . . . . . . . . . . .

· · · · · · 0 E0




= E2 = qN−1 [N ][N − 1]

[2]
. (B.20)

Thus

dσ̂ = q−N
N−1

2
2
N

+(N−1) [N ][N + 1]

[2]
=

[N ][N + 1]

[2]
, (B.21)

and

dω̂ = q−N
N−1

2
2
N

+(N−1) [N ][N − 1]

[2]
=

[N ][N − 1]

[2]
. (B.22)

In the weak coupling limit when k → ∞, [x] → x, the quantum dimensions we just

calculated match their classical values.

The last thing we want to calculate is Sα̂α̂. Following the procedure described before,

the partitions α = αT = {1, 0, 0, . . . , 0}, so

Sα
({
qlαj+N−j

})
= E1

({
qlαj+N−j

})
, (B.23)

where E1

({
qlαj+N−j}) =

∑N
j=1 q

lαj+N−j = qN + qN−1−1
q−1 = qN + q

N−2
2 [N − 1]. Thus

Sα̂α̂
S0

0 =
Sα̂α̂
Sα̂0

S0
α̂

S0
0 =q

−
“

1+ N(N−1)
2

”

1
N

(
qN+q

N−2
2 [N−1]

)
[N ] = q−

1
N
− 1

2

(
q

N+2
2 +[N−1]

)
[N ].

(B.24)

B.2 The framing factor and the Skein relation

For any representation λ̂, the unit of Dehn twist factor is t = e2πihλ̂ , where

hλ̂ =
(λ, λ+ 2ρ)

2(k + g)
. (B.25)

For the fundamental representation α̂ of ŜU(N)k,

hα̂ =
(ω1, ω1 + 2

∑
i ωi)

2(k + g)
=
F11 + 2

∑
i F1i

2(k +N)
=

N2 − 1

2N(k +N)
, (B.26)
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where F here is the quadratic form matrix of SU(N), which is the inverse of the Cartan

matrix. and

t = q
1−N2

2N . (B.27)

In order to solve αL+1 + βL0 + γL−1 = 0, we complete the path integral in two different

ways and get
α

β
tdα̂ + (dα̂)2 +

γ

β
t∗dα̂ = 0, (B.28)

and
α

β
(dα̂)2 + t∗dα̂ +

γ

β

Sα̂α̂
S0

0 = 0. (B.29)

Notice unlike in [9], we keep the framing factor explicitly here.

α

β
= t∗

1−t2 Sα̂
α̂

S0
0

t2 Sα̂
α̂

Sα̂
0 −dα̂

= t∗
1−[N ]2+q−

N
2 [N−1][N+1][N ](q1/2−q−1/2)

−q−N
2 [N−1][N+1](q1/2−q−1/2)

=
q−

1
2N

q1/2−q−1/2
, (B.30)

γ

β
= t

(dα̂)2−1

t2 Sα̂
α̂

Sα̂
0 −dα̂

= t
[N ]2−1

−q−N
2 [N−1][N+1](q1/2−q−1/2)

= − q
1

2N

q1/2−q−1/2
=

(
α

β

)∗
.(B.31)

C. S-matrix of the
(

̂SU(2)/ U(1)
)

k

× Û(1)
k(Mk+2) RCFT

In this appendix we will calculate the primaries and S-matrix of the
(

̂SU(2)/U(1)
)
k
×

Û(1)k(Mk+2) theory. For simplicity we will assume k is odd for the moment, and discuss

even k later on. The fields in the Zk-parafermion CFT, (the coset
(

̂SU(2)/U(1)
)
k
), are

labeled by the SU(2) charge and its U(1) subgroup charge (ℓ, r), where we take them

as twice the traditional values, so that they are integers. For SU(2)k, ℓ = 0, . . . , k and

ℓ− r ≡ 0 mod 2. We also have the identification

(ℓ, r) ≡ (k − ℓ, r ± k) ≡ (ℓ, r ± 2k) . . . . (C.1)

Using this identification we can always map (ℓ, r) for ℓ > k+2
2 to (k − ℓ, r ± k). So we

can restrict to 0 ≤ ℓ ≤ k+1
2 . We will use ψ(ℓ,r) for the corresponding fields and χ(ℓ,r) their

characters in the coset theory.

With these properties, one can see that the states form Zk-loops generated by ψ or ψ†,
where ψ and ψ† are the parafermion fields that appeared in the original ŜU(2)k currents

J+ ∼ ψeiφ
√

2/k and J− ∼ ψ†e−iφ
√

2/k. We can identify ψ ∼ ψ(0,2) and ψ† ∼ ψ(0,−2) for

which hψ = hψ† = 1− 1/k. The other fields in the ŜU(2)k, ψ(ℓ,r)e
irφ/

√
2k, have U(1) charge

r. The whole multiplet under the ŜU(2)k current algebra has character

1

η(τ)

∞∑

t=−∞
χ(ℓ,ℓ−2t)q

(ℓ−2t)2/4k =
1

η(τ)

k−1∑

t=0

χ(ℓ,ℓ−2t)

∞∑

p=−∞
q(ℓ−2t+2pk)2/4k. (C.2)
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We have used the periodicity of χ(ℓ,r). Also, the fields ψ(ℓ,r)e
i(r+k)φ/

√
2k satisfy the same

locality condition as ψ(ℓ,r)e
irφ/

√
2k, thus they are in the ŜU(2)k theory as well. In fact, they

are the k − ℓ multiplet with character

1

η(τ)

k−1∑

t=0

χ(ℓ,ℓ−2t)

∞∑

p=−∞
q(ℓ−2t+k+2pk)2/4k =

1

η(τ)

k−1∑

t=0

χ(k−ℓ,ℓ−k+2t)

∞∑

p=−∞
q(ℓ−k+2t+2pk)2/4k.

(C.3)

The highest weight state in ψ(ℓ,r) with r = −ℓ, . . . , ℓ and ℓ = 0, . . . , k has h = ℓ(ℓ+2)
4(k+2) −

r2

4k , which means for any integer p the highest weight state in ψ(ℓ,ℓ+2pk−2t) has weight

h(ℓ,l+2pk−2t) =

{
ℓ(ℓ+2)
4(k+2) −

(ℓ−2t)2

4k if t = 0, . . . , l
(k−ℓ)(k−ℓ+2)

4(k+2) − (ℓ−2t+k)2

4k if t = ℓ+ 1, . . . , k − 1
(C.4)

From the modular transformation property of ŜU(2)k and Û(1) we can also get that

of the parafermions as follows

S(ℓ,r)
(ℓ′,r′) =

2√
k(k + 2)

sin
π(ℓ+ 1)(ℓ′ + 1)

k + 2
e−iπrr

′/k. (C.5)

Now, instead of J±, let’s use J+
1+M/2 ∼ ψei

√
2/k+Mφ, and J−

1+M/2 ∼ ψ†e−i
√

2/k+Mφ. The

subscript indicates the weight of the currents. The same locality condition tells us that

ψ(ℓ,r) has to be multiplied by exp

[
i 1√

k(kM+2)
(kn + r)φ

]
for any integer n. Together with

the J0 ∼ i∂φ and other fields with ℓ = 0, the new currents form an extended chiral algebra.

The character under this symmetry is now

1

η(τ)

k−1∑

t=0

χ(ℓ,ℓ−2t)

∞∑

p=−∞
q

[ℓ−(Mk+2)t+kn+pk(Mk+2)]2

2k(Mk+2) . (C.6)

The independent multiplets correspond to n = 0, . . . ,Mk + 1. When M = 0, we get the

original ŜU(2)k theory, as above. When M 6= 0, a little calculation shows that if 0 ≤ n ≤

Mℓ, the highest weight state in the multiplet is ψ(ℓ,ℓ−2[ n
M

])e
i

ℓ+nk−(Mk+2)[ n
M

]√
k(Mk+2)

φ
, while if Mℓ+

1 ≤ n ≤Mk+1, the highest weight state in the multiplet is ψ(ℓ,ℓ−2[ n−1
M

])e
i

ℓ+nk−(Mk+2)[ n−1
M

]√
k(Mk+2)

φ
,

where [x] denotes the closest integer to x. We will call this character χ[ℓ,r(ℓ,n);s(ℓ,n)], where

r(ℓ, n) =

{
ℓ− 2[ nM ] if 0 ≤ n ≤Mℓ

ℓ− 2[n−1
M ] if Mℓ+ 1 ≤ n ≤Mk + 1

(C.7)

and

s(ℓ, n) =

{
ℓ+ nk − (Mk + 2)[ nM ] if 0 ≤ n ≤Mℓ

ℓ+ nk − (Mk + 2)[n−1
M ] if Mℓ+ 1 ≤ n ≤Mk + 1

(C.8)

are the corresponding U(1) charges of the primary fields.
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Under modular S transformation, the standard Poisson resummation result tells us that

1

η(τ)

∞∑

p=−∞
q

(r+pN)2

2N →
N−1∑

s=0

1√
N
e

2πirs
N

1

η(τ)

∞∑

p=−∞
q

(s+pN)2

2N , (C.9)

which gives the S transformation property of the combined theory as follows,

χ[ℓ,r(ℓ,n);s(ℓ,n)](−1/τ)

=
k−1∑

t=0

k+1
2∑

ℓ′=0

k−1∑

t′=0

2

k
√

(k + 2)(Mk + 2)
sin

π(ℓ+ 1)(ℓ′ + 1)

k + 2

k(Mk+2)−1∑

s=0

e
2πi(ℓ−2t−Mkt+kn)s

k(Mk+2)
−πi(ℓ−2t)(ℓ′−2t′)

k
χ(ℓ′,ℓ′−2t′)(τ)

η(τ)

∞∑

p=−∞
q

[s+pk(Mk+2)]2

2k(Mk+2)

=
2√

(k + 2)(Mk + 2)

k+1
2∑

ℓ′=0

Mk+1∑

n′=0

sin
π(ℓ+ 1)(ℓ′ + 1)

k + 2

k−1∑

t′=0

e
2πi(ℓ+kn)(ℓ′−2t′+n′k)

k(Mk+2)
−πiℓ(ℓ′−2t′)

k
χ(ℓ′,ℓ′−2t′)

η(τ)

∞∑

p=−∞
q

[ℓ′−2t′+n′k+pk(Mk+2)]2

2k(Mk+2)

=
2√

(k+2)(Mk+2)

k+1
2∑

ℓ′=0

Mk+1∑

n′=0

sin
π(ℓ+1)(ℓ′+1)

k + 2
e

πi(−Mℓℓ′+2ℓn′+2ℓ′n+2knn′)
Mk+2 χ[ℓ′,r(ℓ′,n′);s(ℓ′,n′)](τ)

i.e.,

S(ℓ;n)
(ℓ′;n′) =

2√
(k + 2)(Mk + 2)

sin
π(ℓ+ 1)(ℓ′ + 1)

k + 2
e

πi(−Mℓℓ′+2ℓn′+2ℓ′n+2knn′)
Mk+2 . (C.10)

We have repeated used the periodicity of χ(ℓ, r). To make the formula simpler, let’s define

σℓ = 1−(−1)ℓ

2 , thus since k is odd, ℓ + σℓk is always even. Define n → n − σℓ − (ℓ+σℓk)M
2 ,

then we can show that

S(ℓ;n)
(ℓ′;n′) =

2√
(k + 2)(Mk + 2)

sin
π(ℓ+ 1)(ℓ′ + 1)

k + 2
(−1)ℓℓ

′

e
2πiknn′

Mk+2 . (C.11)

From the periodicity, we can still have n = 0, . . . ,Mk + 1. Notice if we use the new

parameter, the function of U(1) charges of highest weight states in terms of n has to be

modified. The S-matrix is now factorized into ℓ and n parts. For k = 3 and M = 1 for

example, this result coincides with that given in the text, eq. (4.18).

When k is even, the loop with ℓ = k/2 has only k/2 elements. The character of the

multiplet in which the state ψ(k/2,k/2)e
i 1√

k(Mk+2)
(kn+k/2)φ

lives is

1

η(τ)

k
2
−1∑

t=0

χ(k
2
, k
2
−2t)

∞∑

p=−∞
q

[ k
2 −(Mk+2)t+kn+p

k(Mk+2)
2 ]2

2k(Mk+2) =
1

η(τ)

k−1∑

t=0

χ(k
2
, k
2
−2t)

∞∑

p=−∞
q

[ k
2 −(Mk+2)t+kn+pk(Mk+2)]2

2k(Mk+2) .

(C.12)
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for n = 0, . . . ,Mk/2. Apart from the range diffence, the character looks just the same as

before. So the calculation of the modular S-matrix is almost the same as the odd k case.

χ[ℓ;r(ℓ,n);s(ℓ,n)](−1/τ)

=

k
2
−1∑

l′=0

Mk+1∑

n′=0

S(ℓ;n)
(ℓ′;n′)χ[ℓ′,r(ℓ′,n′);s(ℓ′,n′)](τ)+

2√
(k+2)(Mk+2)




Mk
2∑

n′=0

+
Mk+1∑

n′= Mk
2

+1


sin

π(ℓ+1)(k2 +1)

k + 2

e
πi(−Mℓ k

2 +2ℓn′+kn+2knn′)

Mk+2

k
2
−1∑

t′=0

χ(k
2
, k
2
−2t′)(τ)

η(τ)

∞∑

p=−∞
q

[ k
2 −2t′−Mkt′+n′k+pk(Mk+2)]2

2k(Mk+2)

=

k
2
−1∑

l′=0

Mk+1∑

n′=0

S(ℓ;n)
(ℓ′;n′)χ[ℓ′,r(ℓ′,n′);s(ℓ′,n′)](τ) +

2√
(k + 2)(Mk + 2)

Mk
2∑

n′=0

1 + (−1)ℓ

2

e
πi(−Mℓ k

2 +2ℓn′+kn+2knn′)

Mk+2




k
2
−1∑

t′=0

+(−1)ℓ+kn
k−1∑

t′= k
2



χ(k

2
, k
2
−2t′)(τ)

η(τ)

∞∑

p=−∞
q

[ k
2 −2t′−Mkt′+n′k+pk(Mk+2)]2

2k(Mk+2)

=

k
2
−1∑

ℓ′=0

Mk+1∑

n′=0

S(ℓ;n)
(ℓ′;n′)χ[ℓ′,r(ℓ′,n′);s(ℓ′,n′)](τ) +

Mk
2∑

n′=0

S(ℓ;n)
(k
2
;n′)χ[ k

2
,r(k

2
,n′);s(k

2
,n′)](τ) (C.13)

We saw that the S-matrix is the same as k odd case. The only difference is that when k is

even, the ℓ blocks are not of the same size. To simplify, the best we can do is to make the

redefinition n→ n− ℓM/2, then

S(ℓ;n)
(ℓ′;n′) =

2√
(k + 2)(Mk + 2)

sin
π(ℓ+ 1)(ℓ′ + 1)

k + 2
iMℓℓ′(−1)nℓ

′+ℓn′

e
2πiknn′

Mk+2 . (C.14)

To summarize, the Zk-parafermions coupled with one U(1), with symmetry genera-

tors J0 ∼ i∂φ, J+
1+M/2 ∼ ψe

i
q

M+ 2
k
φ
, and J−

1+M/2 ∼ ψ†e
−i

q

M+ 2
k
φ
, will have (k+1)(Mk+2)

2

multiplets. We can use the (ℓ;n) to label them, with ℓ the parafermion loop the state

sits and together with n determines the U(1) charge assignment. When k is odd (even),

ℓ = 0, . . . , k+1
2 (ℓ = 0, . . . , k2 + 1), n = 0, . . . ,Mk + 1(n = 0, . . . , Mk

2 if ℓ = k
2 ).

References

[1] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048].

[2] C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55

[hep-th/9401072].

[3] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

(2004) P06002 [hep-th/0405152].

[4] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena,

Phys. Rev. Lett. 90 (2003) 227902 [quant-ph/0211074].
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